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1 Preface 
 
This document is a report (deliverable D4.2) prepared for the Modern Approaches to the 
Monitoring of BiOdiversity (MAMBO) project (Høye et al., 2023), funded by the European 
Commission through an EU Horizon Europe Research and Innovation Action grant (No. 
101060639). The MAMBO project aims to support EU biodiversity policy and address 
knowledge gaps by providing solutions to biodiversity monitoring through the design and 
development of novel tools and technologies. This report identifies the challenges for 
upscaling habitat condition metrics derived from LiDAR point clouds collected with crewed 
aircraft through (sub)national airborne laser scanning (ALS) surveys as well as Red, Green and 
Blue (RGB) and Near-Infrared (NIR) imagery and LiDAR point clouds collected with affordable 
unmanned aerial vehicles (UAV, i.e. drones). Such datasets can be used to describe the 
condition of habitats for site-specific (e.g. Natura 2000) monitoring, including metrics related 
to vegetation structure, habitat openness, topographic relief, hydrology, plant species 
composition, or plant biomass and abundance. The report analyses the characteristics of 
datasets for upscaling to larger areas (e.g. pre-classifications, point densities, acquisition 
seasons and additional RGB/NIR information of open access ALS LiDAR datasets) and the 
challenges for using drone-collected imagery and UAV point clouds for a consistent EU-wide 
habitat monitoring (e.g. lack of standardized reporting of flight surveys, (meta)data and data 
pre-processing). Besides identifying the challenges for upscaling habitat condition metrics, 
the report also provides an outlook for how the upscaling of habitat condition metrics could 
benefit from the development of a cloud-based virtual research environment (VRE) that 
provides virtual labs, repositories, metadata catalogues and other digital infrastructure 
services for a user-friendly, scalable, and distributed processing of huge volumes of LiDAR 
point clouds and UAV imagery across the EU. 
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2 Executive summary  

This document explores critical challenges associated with upscaling habitat condition 
metrics (e.g., related to the biotic, abiotic and landscape characteristics of Natura 2000 
sites), specifically focusing on data obtained from (sub)national airborne laser scanning 
(LiDAR) surveys and site-focused unmanned aerial vehicle (UAV) remote sensing. Challenges 
encompass a lack of standardization in UAV flight surveys, (meta)data generation, and pre-
processing, as well as inconsistent characteristics in (sub)national LiDAR datasets across the 
EU, involving varying point densities, acquisition seasons, and pre-classification levels. This 
can impact the robustness and transferability of habitat condition metrics related to 
vegetation structure, habitat openness, topography, hydrology, and plant species 
composition and biomass. 

The integration of deep learning methods with UAV imagery and LiDAR point clouds for 
tasks like shrub and tree identification and plant species composition estimation introduces 
challenges in generalizability, with most models being site-specific and limited in spatial 
extent. The 3D nature of LiDAR point clouds adds complexity to deep learning applications, 
requiring careful consideration of projection-based or point-based models, pixel or voxel 
size choices, and challenges with inconsistent pre-classifications, platform- and sensor-
specific settings or environmental and site differences in heterogeneous datasets. 

The processing of habitat condition information from LiDAR point clouds and RGB/NIR 
imagery involves handling massive datasets, requiring substantial computational and 
engineering resources, parallel and distributed processing, big data storage, and large 
computing capacity. Challenges include the need for adjustments in processing workflows 
depending on data characteristics, processing parameters, and infrastructure-specific 
choices regarding memory allocation and distribution among cores and workers of virtual 
machines. 

To address these challenges, the report proposes the development of a cloud-based virtual 
research environment (VRE) enabling the creation of virtual labs for upscaling habitat 
condition metrics from airborne LiDAR and UAV remote sensing, which could enhance data 
discovery, access, and workflow execution. This would require centralized repositories, 
metadata catalogues, and additional services for provenance tracking, workflow 
management, and cloud automation, with existing EU infrastructures like LifeWatch ERIC, 
the European Open Science Cloud (EOSC), and the European Grid Infrastructure (EGI) 
potentially supporting such a VRE.  

Tackling the outlined challenges provides a strategic pathway for advancing habitat 
monitoring in the EU. Imperative is the development and application of standards and best 
practices for data collection and pre-processing, the compilation of standardized and 
machine-readable metadata, and the advancement of VRE services and free and open-
source software. This will contribute to harmonizing habitat condition information and help 
to mitigate the degradation and unsustainable use of natural resources in the EU. 
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3 List of abbreviations  
 

ALS Airborne Laser Scanning 

API Application Programming Interface 

ASPRS American Society for Photogrammetry and Remote Sensing 

CNN Convolutional Neural Networks 

CRS Coordinate Reference System 

EU European Union 

FAIR Findability, Accessibility, Interoperability, and Reusability 

FOSS Free and Open-Source Software 

GPS Global Positioning System 

HPC High-Performance Computing 

LAS File format for the interchange and archiving of lidar point cloud data 

LAZ An open file format to compress LAS data 

LiDAR Light Detection and Ranging 

MAMBO Modern Approaches to the Monitoring of Biodiversity 

MIF Minimum Information Framework 

NIR Near-Infrared 

RGB Red, Green and Blue 

RS Remote Sensing 

SEEA System of Environmental-Economic Accounting 

UAV Unmanned Aerial Vehicle 

UN United Nations 

ViT Vision Transformer 

VM Virtual Machine 

VRE Virtual Research Environment 
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4 Introduction 
 

4.1 Habitat condition 
A good condition of habitats is essential for maintaining biodiversity because the diversity, 
distribution and abundance of animals, plants and other organisms is tightly linked to the 
biotic, abiotic and landscape characteristics of an ecosystem, including vegetation structure, 
soil properties, hydrology, terrain features, microclimates, hedges, tree lines and the amount 
of dead wood. In this context, a good habitat condition enables the conservation of natural 
habitats with their wild fauna and flora, especially threatened species. Yet, habitat extent and 
condition continue to decline at alarming rates, which contributes substantially to the 
ongoing loss of biodiversity (Díaz et al., 2019). In the EU, the vast majority of protected 
habitats shows an unfavourable conservation status, with a high level of degradation and 
unsustainable use of natural resources (European Environment Agency, 2020). Although 
some habitats show improvements, progress has not been sufficient to meet the objectives 
of the EU Biodiversity Strategy to 2020 (European Environment Agency, 2020). Hence, 
habitats in the EU continue to decline and face deteriorating trends from changes in land use, 
eutrophication, unsustainable management practices and other human-induced pressures. 

The new EU Biodiversity Strategy for 2030 strives to be more successful and ensure that 
ecosystems are healthy, resilient to climate change, rich in biodiversity and able to deliver 
essential ecosystem services (European Commission, 2021). This requires to accurately assess 
and monitor the condition of habitats. Of particular interest in the EU are habitats with 
endangered, vulnerable, rare and endemic animal and plant species, and natural and semi-
natural habitat types that are in danger of disappearing. This includes habitats with a small 
distributional range and those that are characteristic for a specific biogeographical regions in 
the EU (European Commission, 2021). Deriving habitat condition indicators often requires 
combining various metrics that capture abiotic characteristics, biotic characteristics, and 
landscape-level characteristics (Maes et al., 2023). This approach is also applied to the 
ecosystem condition typology of the United Nations (UN) System of Environmental-Economic 
Accounting (SEEA) which aims at regular and standardised stocktaking on the extent and 
condition of ecosystems and their services (Czúcz et al., 2021). Measuring and monitoring 
habitat condition therefore requires quantitative metrics that describe the abiotic, biotic, and 
landscape-level characteristics of ecosystems. 
 

4.2 Remote sensing 
Habitat condition monitoring in the EU is still mainly based on qualitative indicators or expert 
judgements (European Environment Agency, 2020). For instance, habitat condition is 
reported at the EU level with the qualitative description of ′good′, ′not-good′ or ′unknown′, 
derived from national reports of EU member states which are based on expert knowledge 
and limited field surveys (Röschel et al., 2020). However, significant advances in remote 
sensing technologies are now creating opportunities for more effective ways of habitat 
monitoring. Since free and openly accessible remote sensing data from satellites are often 
spatially too coarse for monitoring habitat condition at the site level, airborne Light Detection 
and Ranging (LiDAR) data and drone imagery from affordable Unmanned Aerial Vehicles 
(UAVs) offer a promising alternative for habitat condition assessments at scales useful to land 
managers and decision makers. 
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LiDAR and UAV remote sensing provide data at high spatial resolution and are 
increasingly available for habitat condition assessments. To date, LiDAR point clouds collected 
with crewed aircraft through (sub)national airborne laser scanning (ALS) surveys are 
increasingly becoming available in Europe. Such point clouds can be used to derive biotic, 
abiotic and landscape-level characteristics (Table 1), including high-resolution metrics of 
topography and vegetation structure at a country-wide extent (Kissling et al., 2023; Assmann 
et al., 2022; Moeslund et al., 2023). In addition, at the site level, flight campaigns with UAVs 
offer an increasing range of observations, including multispectral, hyperspectral and thermal 
imaging as well as LiDAR point clouds. The most affordable and cost-effective UAVs record 
imagery in the Red, Green and Blue (RGB) and Near-Infrared (NIR) spectrum at mm to cm 
resolution, enabling the mapping of specific plant species, vegetation structure, and abiotic 
characteristics (Table 1). Hence, both LiDAR point clouds and UAV imagery offer promising 
opportunities for assessing habitat condition in protected areas and other sites of community 
importance. 
 
Table 1: Examples of using Light Detection and Ranging (LiDAR) and imaging data from 
Unmanned Aerial Vehicles (UAVs) to quantify habitat condition. 
 

Habitat condition Examples References 
LiDAR   
Biotic characteristics Canopy height and cover, 

vertical and horizontal 
variability of vegetation, 
understory density 

Bakx et al. (2019); Davies & 
Asner (2014); Koma et al. (2021) 

Abiotic characteristics Soil moisture, hydrology, 
elevation, aspect, slope 

Moeslund et al. (2013); 
Assmann et al. (2022); (Davies & 
Asner, 2014) 

Landscape characteristics Hedges & tree lines, tree 
inventories, amount of 
dead wood, patchiness 
of open areas, edge 
extent 

Lucas et al. (2019); Graham et 
al. (2019); Wang, Lindenbergh & 
Menenti (2018b); Abrego et al. 
(2021); Marchi, Pirotti & Lingua 
(2018); Martinuzzi et al. (2009); 
de Vries et al. (2021) 

UAV   
Plant species mapping Invasive, rare or 

protected species 
Oldeland et al. (2021); Hill et al. 
(2017); Zhang et al. (2020); 
James & Bradshaw (2020) 

Biotic characteristics Understory biomass, 
woody plant distribution, 
vegetation height, 
woody plant volume and 
biomass 

Zhang et al. (2022); Olariu et al. 
(2022); van Iersel et al. (2018); 
Cunliffe, Brazier & Anderson 
(2016) 

Abiotic characteristics Bare ground, micro-
topography, soil 
moisture and wetness 

Lendzioch et al. (2021); Ikkala et 
al. (2022); Eischeid et al. (2021); 
Barnas et al. (2019) 
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4.3 FAIR data principles 
While hardware and software for collecting and processing LiDAR point clouds and UAV 
imagery have become much more accessible, an urgent need remains to improve data 
processing, interoperability, and the reuse of data. In this context, the FAIR data principles 
(Findability, Accessibility, Interoperability, and Reusability) act as a guideline for enabling the 
reusability of data and enhancing the ability of machines to automatically find and use the 
data (Wilkinson et al., 2016). This includes, among other things, human- and machine-
readable metadata, standard workflows for preparing, publishing, and preserving data 
products, and open and free access to raw data and derived data products (Hardisty et al., 
2019). Applying the FAIR data principles for an improved data management can lead to 
knowledge discovery and innovation, and to subsequent data and knowledge integration and 
reuse by the broader community. 
 

4.4 Aims and objectives 
In this report, we synthesize key challenges for upscaling habitat condition metrics derived 
from LiDAR point clouds and drone imagery for an EU-wide habitat monitoring. This includes 
assessing the characteristics and FAIR data principles of open access LiDAR point clouds 
collected with airborne surveys, and RGB and NIR imagery and LiDAR point clouds collected 
with UAVs. We focus on the condition monitoring of natural and semi-natural habitats in the 
EU (e.g., Natura 2000 sites) which support endangered, vulnerable, rare, endemic and 
indicator animal and plant species. Besides identifying the challenges for upscaling habitat 
condition metrics, the report also provides an outlook for how those challenges could be 
addressed, proposing the development of a cloud-based virtual research environment (VRE) 
enabling the creation of virtual labs for upscaling habitat condition metrics from airborne 
LiDAR and UAV remote sensing. 
 

5 Challenges for upscaling habitat condition metrics  
 

5.1 Standardising drone surveys 
For drone surveys, there is still much work to be done in developing standards or best 
practices that address the complex data pipeline typical of an UAV project, from raw data 
collection to derived products (Wyngaard et al., 2019). Major challenges include the lack of 
standardisation of flight surveys, little guidance for standardised data generation, absence of 
standardised metadata, and the use of propriety software during the data pre-processing 
(Figure 1). For each flight survey with an UAV, decisions have to be made about the survey 
design and which sensor-platform technology to use (Figure 1). Sensor-platform technology 
is developing fast, and hardware and software of different sensor generations and platforms 
are rarely compatible (Zhang & Zhu, 2023). Moreover, decisions about sampling designs vary 
widely because the survey objectives and the sensor-platform technology vary among UAV 
campaigns. Currently, there is no standard approach or best practice for sensor use 
procedures, such as mounting requirements on different platforms, sample rates, altitude, 
flight patterns and ground observations for calibration.  
 Similarly, there is a lack of standards and guidelines for generating (meta)data 
describing calibration, training and validation procedures during the UAV campaign and how 
to report the flight parameters in a standardised way (Barbieri et al., 2023). This potential lack 
in consistency in observations and calibration can significantly affect the quality of repeat 
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surveys and thus the monitoring of habitat condition. For instance, the parameters set by the 
pilot for the flight (e.g., flight line overlap, height, flight direction and terrain following) or 
other characteristics during the flight survey (e.g., sun light, flight time and cloud cover) can 
have large implications for multi-site and multi-temporal comparisons. Metadata of survey 
variables are currently not reported in a standardized and machine-readable way. A set of 
core metadata should include, for instance, wind speed, cloud cover, flight height, flight 
speed, flight pattern, sensor information, and the date and time. This would support the 
subsequent pre-processing and data analysis in a comparable way.  
 

 
Figure 1: Key aspects of unmanned aerial vehicle (UAV) operation (grey boxes) and related 
challenges for standardisation (green boxes) during flight surveys, data generation and pre-
processing. 
 

For LiDAR point clouds collected with UAV, each LiDAR sensor manufacturer stores the 
data on the instrument in its own way, which is then converted to a standard format using 
the company’s own software. In case of RGB and NIR imagery, Structure from Motion (when 
a large number of highly overlapping image frames are combined to deliver 2-dimensional 
image mosaics and 3-dimensional point clouds) often relies on propriety software provided 
by the sensor-platform provider. Several of these software packages at least allow some 
control (Jiang, Jiang & Jiang, 2020), although much of the modelling is still a black-box. For 
cloud-based solutions, generally very little control is given to the user. 
 

5.2 Characteristics of (sub)national LiDAR point clouds 
In contrast to UAV-collected data, many national and subnational LiDAR point clouds 
collected with airplanes through ALS surveys are becoming freely available across Europe 
(Figure 2a,b). These LiDAR point clouds are often made accessible via a website or an 
institutional repository within a country (Annex Table A1). The point clouds are typically 
provided as LAS or (compressed) LAZ files, i.e., a standard open file format designed for the 
interchange and archiving of LiDAR point clouds. This file format has been developed by the 
American Society for Photogrammetry and Remote Sensing (ASPRS) and adopted as a 
standard by the Open Geospatial Consortium (OGC) (ASPRS, 2019). The LAS/LAZ format 
provides standardized information on the Coordinate Reference System (CRS), data types, 
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header block, and several attributes of the point cloud (ASPRS, 2019). For instance, attributes 
such as X, Y, and Z values of each point, intensity values (i.e., the magnitude of the pulse 
return), the pulse return number and number of returns, scan direction and scan angle, GPS 
time, and the edge of the flight line are reported. In addition, a classification field can provide 
information on the attributes of each point in case a pre-classification has been performed 
before the data provisioning to the public. Examples of such pre-classification attributes are 
‘ground’, ‘bridge’, ‘water’, ‘building’, and ‘unclassified’ (Figure 2c). The coding and definitions 
of these attributes typically follow the ASPRS standard point classes (ASPRS, 2019). In 
addition, information on RGB or NIR image channel values or waveforms can be reported if 
they are simultaneously recorded by the deployed sensor.  
 

 
Figure 2: Coverage of open-access (sub)national LiDAR point clouds in Europe. (a) Full or 
partial LiDAR coverage per country (see details in Annex Table A1). (b) Cumulative number  
of datasets across Europe (datasets listed in Annex Table A1). (c) Example of a LiDAR point 
cloud from the Dutch airborne laser scanning survey (AHN4) showing the coverage of pre-
classification attributes (i.e., standard point classes). White areas indicate areas with no 
data (e.g., laser pulse absorption in water, building fronts, below cars).  

 
While the LAS/LAZ format provides standardized metadata for national and 

subnational LiDAR point clouds, the datasets from different countries are obtained with 
different budgets, for different purposes and with different requirements depending on each 



D4.2 Challenges for upscaling habitat condition metrics 

 12 

country’s needs. Consequently, such datasets still come with a wide variety of characteristics 
(Figure 3). For instance, (sub)national LiDAR datasets vary widely in terms of point densities, 
season of data acquisition (i.e., whether collected in the leaf-on or leaf-off season) and 
whether they provide additional RGB/NIR information or not (Figure 3a–c). This creates 
challenges for the consistent calculation of habitat condition metrics with different LiDAR 
datasets, e.g., datasets from different countries or from different flight campaigns within the 
same country. Point densities from open-access (sub)national LiDAR point clouds in Europe 
range from 1–30 points/m2, with the majority having a density range around 5–10 points/m2 
(Figure 3a). Most datasets are collected during the leaf-off season (i.e., autumn,  winter and 
early spring), but some also during the leaf-on season (Figure 3b). Only a few open-access 
LiDAR point clouds provide additional RGB or NIR information (Figure 3c). Sometimes this 
information is recorded as RGB and sometimes as external bytes, and different versions of 
LAS data formats can provide different information (ASPRS, 2019). In many cases, the pre-
processing of the LiDAR point clouds and the quality control procedures are not accurately 
documented because they are done by companies and not described in scientific publications. 
For instance, information about the dates of data acquisition and the equipment used are 
often not found in the documentations, and the accuracy and exact methodology of the pre-
classification is usually not reported.  
 

 
Figure 3: Variation in characteristics of LiDAR point clouds collected through (sub)national 
airborne laser scanning surveys in Europe (see details in Annex Table A1). (a) Range of 
available point densities. (b) Season of data acquisition (leaf-on vs. leaf-off). (c) Available 
information on LiDAR and simultaneously collected RGB or NIR. (d) Available pre-
classifications following the ASPRS standard point classes. See Annex Table A1 for details 
of datasets. 
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Almost all publicly available LiDAR datasets from ALS surveys provide some pre-
classification for each point (Annex Table A1), but the level of detail in the pre-classification 
varies widely among the different datasets (Figure 3d). Two of the classes (‘ground’ and 
‘unclassified’) are almost always provided (Figure 3d) because terrain mapping is the intended 
purpose of many national ALS flight campaigns. This can be sufficient for quantifying habitat 
condition in relation to abiotic characteristics such as elevation, aspect and slope, although 
the ‘ground’ class may also unintentionally include short-stature vegetation such as grasses 
(Figure 4). A few other classes (e.g., vegetation, building, noise and water) are also commonly 
provided (i.e., in >50% of the datasets, Figure 3d), but the details and accuracy of those classes 
vary widely. This can influence habitat condition mapping, e.g. the calculation of vegetation 
structure metrics derived from national ALS datasets (Kissling et al., 2023). For instance, 
Finland categorizes vegetation into low, medium, and high; Estonia only identifies tall 
vegetation; Switzerland includes a general vegetation class; and Scotland, Belgium, and the 
Netherlands do not provide any vegetation class (Annex Table A1). When vegetation points 
are not provided in a specific class, they are typically included in the class ‘unclassified’ which 
can also contain points from other objects such as transmission towers, traffic signs, trucks 
and cars (Figure 4). This can introduce biases and errors when quantifying vegetation 
structure if one assumes that the class ‘unclassified’ only contains vegetation points (Kissling 
et al., 2023). For instance, powerlines and transmission towers are only rarely pre-classified 
(Figure 3d) and may cause erroneously high vegetation height values in LiDAR metrics 
capturing the canopy height of ecosystems (Shi & Kissling, 2023).  

 
Figure 4: Example of a LiDAR point cloud (AHN4 dataset from the Netherlands) in which 
vegetation and non-vegetation objects (e.g., transmission towers, traffic signs, trucks and 
cars) are included in the same class (‘unclassified’, grey). The ‘ground’ class (green) probably 
includes not only ground points (i.e., terrain) but also some short-stature vegetation (e.g., 
grasses). White areas indicate areas with no data (e.g., laser pulse absorption in water, 
building fronts, below bridges). 
 

5.3 Metric robustness and transferability 
One of the most important characteristics of a LiDAR point cloud is its point density. Point 
densities of publicly available LiDAR datasets in Europe vary widely (Figure 3a) due to 
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differences in scanning geometry (multiple flight lines and different scanning directions), 
capability of the used laser scanner, and the season of data acquisition (leaf-on or leaf-off). 
Point densities also vary between ALS surveys from different time periods in the same country 
because laser scanner technology is rapidly developing and new ALS surveys tend to have 
improved sensors with better scanning capabilities (i.e., higher point densities). This can 
affect the calculation of biotic, abiotic and landscape characteristics and the monitoring of 
other habitat condition over time (i.e., change detection). Nevertheless, not all metrics might 
be affected in a similar way by changes in point densities (Figure 5). Moreover, the robustness 
and transferability of metrics might also depend on the volume geometry at which they are 
calculated, such as the spatial resolution (e.g., 1 × 1 m or 10 × 10 m) of the grid cell that defines 
the neighbourhood for metric calculation (Meijer et al., 2020). 
 

 
Figure 5: Twenty-five LiDAR vegetation metrics (blue: height metrics, green: cover metrics, 
orange: structural complexity metrics) calculated with different point densities across plots 
of 1 × 1 m resolution (n = 94) in woodland habitats of the Netherlands. Point densities were 
down-sampled from the original Dutch AHN4 dataset (‘ori.’) to six lower point densities 
(note the inverted x-axes). Boxes represent the interquartile range, horizontal red lines the 
medians, whiskers extend to the 5th and 95th percentiles, and outliers are plotted as dots. 
See Annex Text A1 for methodological details and Annex Table A2 for metric explanations. 
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 To assess how different point densities may affect the robustness and transferability 
of metrics, a large diversity of LiDAR vegetation metrics and terrain features could be 
calculated (Bakx et al., 2019; Davies & Asner, 2014; Assmann et al., 2022; Moeslund et al., 
2019). To exemplify the effect, we focus here on a set of 25 LiDAR vegetation metrics which 
represent different aspects of vegetation height, vegetation cover and structural complexity 
(e.g., vertical variability) of vegetation (Kissling et al., 2023; Kissling & Shi, 2023). The 25 LiDAR 
metrics were calculated with a workflow that combines shapefiles from Natura 2000 sites 
with LAZ files from LiDAR point clouds (Annex Figure A1). We selected Natura 2000 sites with 
woodlands in the Netherlands (Annex Figure A2) and calculated metrics using the original 
point density of the Dutch AHN4 dataset (20–30 points/m2) as well as six randomly down-
sampled point clouds (20, 15, 10, 5, 2 and 1 points/m2, respectively) for the same locations 
(see methods in Annex Text A1). Results revealed that the 25 LiDAR metrics are not equally 
robust to varying point densities (Figure 5). Vegetation-height-related metrics were mostly 
robust to varying point densities (blue plots in Figure 5) whereas vegetation-cover-related 
metrics and structural complexity metrics were often sensitive to low point densities (green 
and orange plots in Figure 5). 
 

 Especially vegetation cover metrics derived from LiDAR point clouds might be strongly 
affected by varying point densities because they depend per definition on the density of 
vegetation points (Annex Table A2). Hence, a low point density affects the robustness of those 
metrics (green plots in Figure 5). For example, the pulse penetration ratio (PPR, Figure 5), a 
metric to quantify the openness of vegetation, tends to imply that woodlands are more open 
if point densities decrease. The density above the mean vegetation height, a measure of the 
density of the upper vegetation layer, is also strongly decreasing if point densities decrease 
(Figure 5). Other vegetation cover metrics, such as height layer ratios (measuring the density 
of vegetation in certain height layers), vary in their response to point densities depending on 
which vegetation layer is considered, especially at point densities <5 points/m2. Besides cover 
metrics, metrics of vegetation structural complexity (capturing the vertical distribution of 
biomass) can also be affected by varying point densities (orange plots in Figure 5). Some 
structural complexity metrics are relatively robust if point densities are >5 points/m2, 
including the coefficient of variation, roughness, skewness, standard deviation and variance 
of vegetation height (Figure 5). Other structural complexity metrics, such as the Shannon 
index (measuring the evenness of vertical vegetation distribution), strongly decrease with 
lower point densities. The majority of European open-access LiDAR point clouds derived from 
ALS surveys have a point density of 5–10 points/m2 (Figure 3a). However, it is important to 
realize that many points are related to ground, water, buildings or other human 
infrastructures, so that the actual density of vegetation points is much lower. Calculating the 
metrics at a coarser resolution (e.g. 10 × 10 m instead of 1 × 1 m) will result in a higher number 
of points available for metric calculations and thus increases the robustness of metrics to 
varying point densities (see Annex Figure A3 for examples of the 25 metrics calculated at 10 
× 10 m resolution). However, this also comes at the cost of losing details at high resolution, 
such as the fine-scale distribution of shrubs and open patches. 
 

5.4 Generalizability of deep learning methods 
As in other research fields, deep learning methods are increasingly applied to UAV imagery 
and LiDAR point clouds in the context of ecological applications, e.g., for identifying and 
classifying individual shrubs and trees (Allen et al., 2022; Allen et al., 2023; Fan et al., 2023), 



D4.2 Challenges for upscaling habitat condition metrics 

 16 

mapping tree crowns (Weinstein et al., 2020), estimating forest tree species composition 
(Murray et al., 2024), for semantic class labelling (e.g. tree, shrub, grass, low vegetation) in 
the context of point cloud classification (Zhao et al., 2021; Yousefhussien et al., 2018; 
Widyaningrum et al., 2021), or when removing powerline noise for calculating vegetation 
metrics (Shi & Kissling, 2023). While these developments are promising, most of the 
development and testing of these algorithms is done at single sites or with single datasets, 
and only few models are trained and evaluated with datasets from multiple sites or across 
broad spatial extents (Figure 6a). Hence, current model training and testing is insufficient for 
generalizing deep learning methods for ecological applications and habitat condition 
monitoring, partly because a large amount of training data is currently not easily (or openly) 
accessible. 
 

 
Figure 6: Challenges for generalizing deep learning methods to large-scale or multi-site 
habitat condition applications. (a) Lack of training and testing data from multiple datasets 
or multiple sites. (b) Choice of deep learning model type and settings. (c) Differences in 
dataset characteristics. 
 
 Another key challenge for generalizing deep learning methods is the type of deep 
learning model that is applied (Figure 6b). The 3D nature of LiDAR point clouds means that 
the data cannot be directly processed using standard convolutional neural networks (CNNs) 
or vision transformers (ViTs) that are deployed for 2D grid-based datasets (e.g. RGB images). 
The LiDAR data have to be either regularized by projecting the 3D point cloud into 2D pixels 
or voxels (projection-based models) or the CNNs and ViTs have to be designed specifically for 
3D data processing (point-based models). For projection-based models, the choice of the pixel 
or voxel size (which depends on available point densities) has to be defined before model 
training and might subsequently affect the accuracy of the deep learning models when 
applied to other datasets (Xi et al., 2020). For point-based models, differences in point 
densities between datasets can affect the generalizability of deep learning methods from one 
dataset to another (Chen, Chen & Liu, 2021). 

Besides point densities, other differences in dataset characteristics can influence the 
generalizability of deep learning models (Figure 6c). For instance, using the pre-classification 
of an ALS point cloud dataset from one country for model training and applying the model to 
a dataset from another country can be highly accurate for a range of classification categories 



 17 

(e.g., ground, vegetation, powerlines  and buildings), but may lead to misclassifications in 
other categories that vary in shape among countries (e.g., transmission towers) (Shi & Kissling, 
2023). Similarly, platform- and sensor-specific settings or environmental and site differences 
will affect the generalizability of deep learning models (Figure 6c). Scanner settings (e.g., 
scanning angles, scanner maximum range, scanner pulse repetition rate) can affect basic 
characteristics of LiDAR point clouds (Brede et al., 2022), differences in the normalization of 
intensity values can affect deep learning models (Murray et al., 2024), and data from different 
seasons might require to remove specific details (e.g. leaves of deciduous trees) before model 
training (Wang et al., 2018a). Data acquired with different sensor platforms —such as 
airborne, mobile, terrestrial or UAV laser scanners— will differ not only in their data 
structures (e.g., level of details captured from trees), but also most likely deviate in the 
acquisition season. The generalizability of species recognition models also suffers from 
geographic differences in species composition. Most deep learning models focus on the 
recognition of a few species that are specific for the location of the training data (Fan et al., 
2023). Such deep learning models will not successfully generalize to other species that are 
absent in the training samples. 
 

5.5 Computational challenges 
To derive biotic, abiotic and landscape characteristics from LiDAR point clouds or RGB/NIR 
imagery from UAVs, massive (e.g., multi-terabyte) datasets need to be processed, especially 
for country-wide assessments (Assmann et al., 2022; Kissling et al., 2023). Given the large 
data volumes (examples in Annex Table A1), the processing is computationally demanding 
and requires parallel and distributed processing (Meijer et al., 2020). As an example, 
processing of the country-wide LiDAR data (AHN3) of the Netherlands required handling ∼16 
TB data volume with ∼700 billion points (Kissling et al., 2022). Processing this dataset into 25 
metrics of vegetation structure at 10 m resolution across the whole Netherlands took 294 
days of total central processing unit (CPU) time (i.e., 14 days total wall-time), using a high-
throughput workflow on a cluster of virtual machines (VMs) with fast CPUs and high memory 
nodes within the Dutch national IT infrastructure SURF (Kissling et al., 2022). This workflow 
includes typical steps for LiDAR point cloud processing, such as re-tiling, normalization, 
feature extraction and rasterization (Figure 7). To perform the processing, all 1,367 LAZ files 
(each of 5 km × 6.25 km size and with an individual data volume between 0.3 MB to 6 GB) 
first had to be downloaded from the national AHN repository and then split and re-tiled into 
37,457 tiles of 1 km × 1 km size, due to memory constrains for the VMs (Kissling et al., 2022). 
Processing such massive datasets therefore comes with many computational challenges that 
are typical for big data (Figure 7). 
 Handling massive datasets requires big data storage, sufficient computing and 
engineering resources, scheduling of virtual machines, and parallelization and distribution of 
tasks (Kissling et al., 2022; Meijer et al., 2020). Not every IT-infrastructure could provide 
sufficient data storage and computing capacity for such a workflow. Depending on the 
available infrastructure, data storage could differ between remote and local storage, and the 
speed/connection of accessing the data storage is crucial for processing efficiency. It is 
generally recommended that the data storage is close to the processing. Besides data storage, 
the way of parallelization and distribution within the workflow may also differ from one 
infrastructure to another. For instance, deploying the workflow with a cluster of VMs on a 
national IT infrastructure requires to define how the tasks are distributed among workers of 
the cluster (Kissling et al., 2022). When deploying the same workflow on a remote cloud 
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infrastructure, the parallelization has to be done using additional modules to avoid 
performance bottlenecks (Zhao et al., 2022; Wang et al., 2022). Different IT-infrastructures 
will also provide different computing capacity and resources. Three key factors of the capacity 
are the number of workers/VMs, the available cores per worker/VM, and the memory 
capacity. Configuration adjustments have to be made based on the input data (e.g., volume), 
required output (e.g., spatial resolution, number of metrics), and the availability of computing 
resources within a given IT infrastructure. This requires a good knowledge of the input data, 
the workflow, and the infrastructure, as well as thorough testing of the (time) efficiency of 
each workflow step during the processing.  
 

 
Figure 7: Example of a high-throughput LiDAR workflow for generating geospatial data 
products of vegetation structure from airborne laser scanning point clouds. The number, 
sizes and volumes of files creates various computational challenges, illustrated with the 
processing of a country-wide airborne laser scanning dataset of the Netherlands (see details 
in Kissling et al., 2022). 
 

Different data characteristics (e.g., data volumes of tiles, data format, point density, 
pre-classification, and coordinate system) from different data sources require different 
processing steps and parameters. For instance, when a single raw file is too large to be 
handled for a given cluster/worker, splitting the big chunk of files into smaller ones should 
be considered as the first step of the process. Moreover, the parameters in the workflow 
have to be adjusted based on the specific pre-classification code of the target data source. 
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For example, for the Dutch AHN3 data, vegetation belongs to the classification code 
‘unclassified’, while the Spanish ALS data have the vegetation classified as ‘low vegetation’, 
‘medium vegetation’, and ‘high vegetation’. Similarly, during the re-tiling step, the 
employed grid setting (X, Y coordinate boundaries) need to be adjusted for the specific 
coordinate system and the coverage of the target data source.  

6 Outlook 
6.1 Cloud-based virtual research environments 
The upscaling of habitat condition metrics for a consistent EU-wide habitat monitoring would 
benefit from a cloud-based virtual research environment (VRE) that enables the creation of 
application-specific virtual laboratories (e.g., airborne LiDAR or UAV virtual labs), providing 
user-centric support for data discovery and access and for composing and executing 
workflows (Figure 8). Such a VRE would include a catalogue of research assets (to search 
datasets, software and algorithms), a workflow management system, a data management 
framework, and tools for enabling user collaboration (Zhao et al., 2022). The development of 
virtual labs for airborne LiDAR and UAV remote sensing would enable users to scale up the 
consistent retrieval of habitat conditions metrics from multi-national LiDAR point clouds and 
multi-site  drone data (LiDAR and imagery) collected across the EU. Building a VRE will most 
likely be a success if the implemented tools and programming languages are familiar to the 
users (e.g., ecologists, data scientists and remote sensing experts). For instance, a range of 
free and open-source software (FOSS) tools for LiDAR and UAV image processing are now 
available, including CloudCompare (https://www.danielgm.net/cc/), OpenDroneMap 
(https://www.opendronemap.org/), the Point Data Abstraction Library (PDAL, 
https://pdal.io/en/2.6.0/), the Geospatial Data Abstraction Library (GDAL, https://gdal.org/), 
the R package LidR (Roussel et al., 2020), the Python tool Laserchicken (Meijer et al., 2020), 
and Jupyter Notebooks of the high-throughput Laserfarm workflow (Kissling et al., 2022). 
When developing a VRE, such notebook environments (e.g., R-Studio and Jupyter) and 
popular programming languages (e.g., Python, R, C++ and Julia) should be taken into account 
(Zhao et al., 2022). For less-programming oriented users, simplified and user-friendly 
interfaces should be available for workflow execution, e.g., by encapsulating different 
workflow steps as dockerized services with file-based input and output (Zhao et al., 2022). 
 

6.2 Repositories 
An important step is to make existing LiDAR point clouds and drone imagery across the EU 
better findable and accessible. For ALS LiDAR, a recent European Commission report 
(Kakoulaki, Martinez & Florio, 2021) has summarized available LiDAR point clouds, digital 
surface models (DSMs) and digital terrain models (DTMs) in Europe, but the availability of 
datasets changes quickly as more flight campaigns are conducted and more countries decide 
to publish their (sub)national datasets (see Annex Table A1). For LiDAR point clouds, there is 
currently no central data repository in place. Instead, all national datasets are stored on 
separate repositories or websites, usually without machine-readable access to their 
interfaces (e.g., no standardized and stable APIs). National websites are usually in the local 
language and poorly documented which generates additional barriers for data re-use in a 
European context. There are also only few data repositories available (national or global) for 
sharing raw and pre-processed UAV data (RGB/NIR imagery and LiDAR point clouds). One 
example is the OpenAerialMap repository (https://openaerialmap.org/) which provides 
access to openly licensed imagery and map layer services. Much UAV data, however, are 

https://www.danielgm.net/cc/
https://www.opendronemap.org/
https://pdal.io/en/2.6.0/
https://gdal.org/
https://openaerialmap.org/
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available in general-purpose open repositories such as Zenodo. This makes them often very 
hard to find. More broadly, there is no overview or inventory of UAV datasets yet available, 
and information on accessibility (e.g., access protocols, licences, ownership, citation), data 
extent (e.g., spatial and temporal extent), and interoperability (e.g., standards and formats) 
are not available in a machine-readable way. Hence, creating a data repository in a VRE (or 
APIs to exchange data with existing repositories) would be an important infrastructure service 
(Figure 8). 
 

 
Figure 8: A simplified illustration of a Virtual Research Environment (VRE) that enables the 
creation of application-specific virtual labs for deriving habitat condition metrics, e.g., for 
processing airborne LiDAR or UAV remote sensing data, with underlying support from 
available EU infrastructure services. 
 
 Similar to LiDAR and UAV imagery, the processing workflows and deep learning 
models are not easy to find and access. Some machine learning models are stored on online 
repositories such as the Hugging Face's open-source platform (https://huggingface.co/), but 
few researchers make use of this for workflows that produce habitat condition metrics from 
LiDAR and UAV imagery. Other processing workflows are also stored in general-purpose open 
repositories such as Zenodo, and thus hard to find. For software that has been developed in 
the Python programming language, the Python Package Index (PyPI) provides a software 
repository. However, many processing workflows, even if programmed in Python, are not 
easy to find. Hence, a workflow repository in a VRE (Figure 8) with relevant R and Python 
scripts, Jupyter notebooks and other open-source software tools would facilitate the 
upscaling of habitat condition metrics from airborne LiDAR and UAV remote sensing across 
the EU. 
 

6.3 Metadata catalogues 
A metadata catalogue would allow making airborne LiDAR point clouds, RGB/NIR imagery 
from UAVs, and their processing workflows findable and accessible in a VRE (Figure 8). This 

https://huggingface.co/
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may include mapping services that harvest metadata of relevant assets (datasets, software 
and algorithms) from other platforms and research environments (Martin et al., 2019; Zhao 
et al., 2022). Such a catalogue should include basic information on metadata (e.g., general 
info, geographic and temporal information, LiDAR-specific attributes), how data are stored 
(databases, single files, file formats, etc.), and how they can be accessed (e.g., via open data 
platforms, institutional repositories or websites). The LAS/LAZ format (ASPRS, 2019) already 
provides a good basis for the standardized description of LiDAR raw data (e.g., point clouds 
from national ALS surveys). However, once LiDAR point clouds have been processed into 
LiDAR metrics, they are typically made available as raster files (Assmann et al., 2022; Kissling 
et al., 2022; Roussel et al., 2020). To describe these generated data products in a standardized 
way (for publishing, sharing, and reuse), metadata templates need to include also relevant 
metadata specifications for geospatial and environmental datasets, e.g., based on INSPIRE, 
ISO, and EML (Hardisty et al., 2019). For datasets captured with UAVs, there is currently no 
standardised way of describing their metadata. A Minimum Information Framework (MIF) 
therefore needs to be developed and implemented to describe UAV platforms and flight plans 
(Barbieri et al., 2023), including best practice protocols for campaign flying and data pre-
processing. Similar solutions are needed for describing the metadata of processing workflows 
for UAV imagery and the resulting data products that are generated from them. 
 

6.4 Other infrastructure services 
Besides repositories and metadata catalogues, a cloud-based VRE would require additional 
digital infrastructure services (Figure 8). For instance, a provenance explorer would provide 
an interface for users to interactively explore the system logs and the provenance of 
workflows and to identify the anomalies and reproduce the workflows or problems (Zhao et 
al., 2022). A workflow manager (Figure 8) would help to design specific workflows, to 
compose the logical relations and dependencies among components, to configure the 
parameters (as well as input and output), and to execute the processing. Tools for cloud 
automation would enable the execution of workflows on remote infrastructures, including 
planning, automation and configuration of VMs and computing clusters, and the scheduling 
of workflow execution (Zhao et al., 2022). Finally, online dashboards and web viewers would 
visualize the progress of workflow execution and provide a comprehensive data view, 
including maps, graphics, and summary statistics. 
 A VRE would take advantage of existing EU infrastructures (Figure 8). For instance, 
LifeWatch ERIC is an e-Science European infrastructure for biodiversity and ecosystem 
research, which provides various ICT tools and services, including functionalities for VREs 
(https://www.lifewatch.eu/). The European Open Science Cloud (EOSC) is a virtual 
environment for hosting and processing research data to support EU open science, e.g., with 
open and seamless services for storage, management, analysis and re-use of research data 
(https://eosc-portal.eu/). The European Grid Infrastructure (EGI) provides access to high-
throughput computing resources across Europe using grid computing techniques, including 
high-throughput and cloud computing, storage and data management (https://www.egi.eu/). 
Hence, the basic IT support could come from existing EU infrastructures whereas the specific 
infrastructure services of the VRE would have to be developed. 

7 Conclusions 
This report summarizes critical challenges for upscaling habitat condition metrics from 
airborne LiDAR and UAV remote sensing for an EU-wide monitoring. While the provided 

https://www.lifewatch.eu/
https://eosc-portal.eu/
https://www.egi.eu/
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overview is probably not exhaustive, the encountered challenges are exemplary for all ‘four 
Vs’ of big data that are typical in Earth system science (i.e., volume, velocity, variety and 
veracity; Reichstein et al., 2019). They also reflect the main challenges encountered when 
applying the FAIR Guiding Principles for scientific data management (e.g., capturing 
standardized, richly described and machine-actionable (meta)data; Wilkinson et al., 2016). It 
is therefore imperative to advance the development and application of standards and best 
practices for data collection and pre-processing, the compilation of standardized and 
machine-readable metadata, and the advancement of free and open-source software (FOSS). 
Dealing with heterogeneous datasets (e.g., different point densities and pre-classifications of 
national LiDAR datasets), applying and developing deep learning algorithms and making use 
of cloud and HPC computing infrastructures further requires interdisciplinary collaborations 
(e.g., between ecologists, machine learning engineers, and software developers) and a high 
degree of specialization for their basic processing. Advancing the adoption of Open Science 
principles (open data, open source and open methods) and FAIR Guiding Principles 
(Findability, Accessibility, Interoperability, and Reusability) (Gallagher et al., 2020; Wilkinson 
et al., 2016) will help to better assess and monitor the condition of habitats, and thereby 
contribute to reverse the degradation and unsustainable use of natural resources in the EU. 
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10 Annex  
 

10.1 Table A1 Examples of European open-access LiDAR point clouds 
 
Table A1: Examples of European open-access LiDAR point clouds derived from airborne laser scanning (ALS) surveys over a (sub)national extent (as at 2023-
10-28). Such raw datasets (point clouds) enable the quantification of vegetation structure and terrain properties at high spatial (e.g. 1–10 m) resolution by 
processing the multi-terabyte ALS dataset into raster layers, capturing height, cover or structural complexity of vegetation. 

Country Dataset name Survey period Point density 
(pt/m2) 

RGB 
NIR 

Data 
volume* 

Pre-classification Leaf-
on/leaf-
off 

Coordinate system Coverage Download 

Finland Laser scanning 
data 5 p 

2008–2020 0.5–5 - 4 TB Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Low error points (7), 
Overlap area (12), 
Air points (15), 
Isolated (16), 
Fault points (17)  

Leaf-off ETRS89 / TM35FIN(E,N) 
(EPSG:3067); N2000 height 
(EPSG:3900)  

Complete Link 

Sweden Laser data 
Download, 
forest/NH 

2018–2022 1–2 - 5 TB Unclassified (1), 
Ground (2),  
Low point (noise) (7), 
Water (9),  
Bridges (17), 
High noise (18)   

Leaf-off SWEREF 99 TM 
(EPSG:3006) 

Partially Link 

Norway Laser scanning 
for national 
detailed height 
model (NDH)  

2016–2023 0.2–10 - 6 TB Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6), 
Low point (7), 
Water (9), 
Overlap (12), 
Bridge (17), 

Leaf-on 
& Leaf-
off 

EUREF89 UTM32/33/35 Complete Link 

https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en
https://www.lantmateriet.se/en/geodata/geodata-products/product-list/laser-data-download-forest/
https://hoydedata.no/LaserInnsyn/
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Big pot rock (20), 
Snow (21)  

Denmark Danish elevation 
model (DHM) 

2007 
2018-2023 

4.5–25 - 10 TB Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6), 
Water (9)  

Leaf-off ETR89 UTM 32N (EPSG: 
25832) 

Complete Link 

Estonia Estonian 
Topographic 
Database 

2008–2021 0.2–18 RGB 30 TB Unclassified (1), 
Terrain (2), 
Tall vegetation (5), 
Buildings (6), 
Noise (7), 
Water (9), 
Terrain under bridges (17), 
Noise (18)  

Leaf-off Estonian Coordinate 
System of 1997 
(EPSG:3301) 

Complete Link 

England National LiDAR 
Programme 
Point Cloud 

2016–2021 0.5–16 - 45 TB Unclassified (1), 
Ground (2),  
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7) 
Water (9)  

Leaf-off OSGB 1936 / British 
National Grid 

Complete Link 

Scotland LiDAR for 
Scotland Phase 
1-6 LAS 

2009–2022 1–16 - 8 TB Unclassified (1), 
Ground (2) 

Leaf-off ETRS89 (EPSG:4258) Complete Link 

Netherlands AHN1–4 1996–2002, 
2007–2012, 
2014–2019, 
2020–2022 

0.2–1, 
6–10, 
10–16, 
20–30  

- 1TB, 
7 TB, 
16 TB, 
40 TB 

Never classified (0), 
Unclassified (1), 
Ground (2),  
Building (6),  
Water (9), 
Reserved (26) 

Leaf-off EPSG:28992 Amersfoort / 
RD New 

Complete Link 

Belgium Open LiDAR data 
Digital Elevation 
Model  

2001–2004, 
2013–2015 

16–20 RGB 25 TB Unclassified (1), 
Ground (2),  
Water (9) 

Leaf-off Belge 1972 (EPSG:31370) Partially Link 

Germany Digital terrain 
models (DGM) 

2010–2013 
2014–2019 
2020–2023 

4–10 - 10 TB Unclassified (1), 
Ground (2), 
Water (9), 
Wire (13), 

Leaf-off EPSG: 25833 Partially Link 

https://datafordeler.dk/
https://geoportaal.maaamet.ee/eng/Spatial-Data/Elevation-data-p308.html
https://environment.data.gov.uk/dataset/094d4ec8-4c21-4aa6-817f-b7e45843c5e0
https://remotesensingdata.gov.scot/data#/map
https://www.ahn.nl/ahn-viewer?origin=/common-nlm/viewer.html
https://remotesensing.vlaanderen.be/apps/openlidar/#collapseDataDownload
https://www.geoportal-th.de/de-de/Downloadbereiche/Download-Offene-Geodaten-Th%C3%BCringen/Download-H%C3%B6hendaten
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Reserved (30)  
France National HD 

LiDAR 
programme 
Point Cloud 

2021–2023 1–10 - 20 TB Unclassified (1), 
Ground (2),  
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Water (9), 
Bridge (17), 
Perennial Surface (64), 
Artifacts (65), 
Virtual Points (66)  

Leaf-
on/leaf-
off 

RGF93 / Lambert-93 Partially Link 

Switzerland swissSURFACE3D 2017–2024 5–20 - 25 TB Unclassified (1), 
Ground (2),  
Vegetation (3), 
Building (6),  
Water (9), 
Bridge (17)  

Leaf-off LV95 – LN02 Partially Link 

Luxembourg LiDAR 2019 - 3D 
survey 

2019 15–20 RGB 2 TB Unclassified (1), 
Ground (2),  
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7), 
Water (9), 
Bridge (13), 
Powerlines (15)  

Leaf-off ETRS89 Complete Link 

Poland ISOK 
Laser scanning 
(LIDAR) data–
entral level 

2010-2011 
2011-2023 

4–12 - 12 TB Never classified (0), 
Ground (2),  
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7), 
Water (9), 
Overlap (12)  

Leaf-
off/Leaf-
on 

ETRS89 / Poland CS92 Complete Link 

Spain LIDAR 2ª 
Cobertura  

2015–2021 0.5–2 RGB 
NIR 

5 TB Unclassified (1), 
Ground (2),  
Low vegetation (3), 

Leaf-off ETRS89 Complete Link 

https://geoservices.ign.fr/lidarhd#telechargementclassifiees
https://www.swisstopo.admin.ch/en/geodata/height/surface3d.html
https://data.public.lu/fr/datasets/lidar-2019-releve-3d-du-territoire-luxembourgeois/
https://mapy.geoportal.gov.pl/imap/Imgp_2.html
http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR
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Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7), 
Water (9), 
Overlap (12), 
Bridge (17) 

Portugal Projeto áGIL - 
Dados LiDAR 

2019–2020 5–14 RGB 
NIR 

5 TB - Leaf-on PT-TM06/ETRS89 Partially Link 

Greece Santorini LiDAR 
data 

2012 2–5 - 2 TB Unclassified (1), 
Noise (7) 

Leaf-on HGRS87 Partially Link 

Slovenia Slovenian LiDAR 
data 

2014–2015 2–5 - 2.5 TB Never classified (0), 
Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7)  

Leaf-on EPSG:5514 Complete Link 

Latvia Basic data of the 
digital elevation 
model 

2013–2019 1.5–4 - 10 TB Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7), 
Water (9) 

Leaf-off LKS-92 TM Complete Link 

Slovakia Airborne Laser 
Scanning 1st 
project cycle 

2017–2023 5–10 - 8 TB Unclassified (1), 
Ground (2) 

Leaf-off S-JTSK(JTSK03) Complete Link 

Lithuania Lidar_DR_LT 2019–2021 5–25 - 6 TB Never classified (0), 
Unclassified (1), 
Ground (2), 
Low vegetation (3), 
Medium vegetation (4), 
High vegetation (5), 
Building (6),  
Noise (7), 
Overlap (12) 

Leaf-off LKS94 Partially Link 

*Data volume represents how much data storage is needed. It is estimated based on the number of files available in each download portal and the average size of each file. 

https://www.dgterritorio.gov.pt/cartografia/cartografia-topografica/modelos-digitais-do-terreno
https://figshare.com/articles/dataset/2012_Santorini_LiDAR_data/1138718
http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso
https://www.lgia.gov.lv/en/Digit%C4%81lais%20virsmas%20modelis
https://zbgis.skgeodesy.sk/mkzbgis/en/teren/toc?pos=48.800000,19.530000,8
https://www.geoportal.lt/map/index.jsp?lang=en
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10.2 Table A2 LiDAR metrics of vegetation structure 
 
Table A2: Twenty-five LiDAR metrics capturing vegetation structure in three key dimensions (i.e. vegetation height, vegetation cover and structural 
complexity of vegetation). All metrics were calculated with the normalized point cloud of the Dutch AHN4 dataset (see Annex Table A1), using the Laserfarm 
high-throughput workflow (Kissling et al., 2022). 
 

Abbreviation Name Formula Description Ecological relevance 

Vegetation height     
H_max Maximum vegetation 

height 
𝑧𝑚𝑎𝑥  Maximum of normalized z within a 

grid cell 
Height of the vegetation canopy surface 
and tree tops 

H_mean Mean of vegetation 
height 

1

𝑁
× ∑ 𝑧𝑖 where 𝑁 is the number of normalized z 

values and ∑ 𝑧𝑖  the sum of all normalized z 
values in a grid cell 

Mean of normalized z within a grid 
cell 

Average height of vegetation (e.g. mean 
tree and shrub height in forests) 

H_median Median of vegetation 
height 

𝑧𝑚𝑒𝑑𝑖𝑎𝑛  
 

Median of normalized z within a grid 
cell 

Average height and vertical distribution 
of vegetation 

Hp_25 25th percentile of 
vegetation height 

𝑛 = (
25

100
) × 𝑁, where 𝑁 = number of 

normalized z values (sorted from smallest to 
largest), and 𝑛 = ordinal rank of a given value 

Capturing the 25th percentile of 
normalized z within a grid cell 

Density of vegetation in the low 
stratum 

Hp_50 50th percentile of 
vegetation height 

𝑛 = (
50

100
) × 𝑁, where 𝑁 = number of 

normalized z values (sorted from smallest to 
largest), and 𝑛 = ordinal rank of a given value. 
This corresponds to the Hmedian 

Capturing the 50th percentile of 
normalized z within a grid cell 

Average height and vertical distribution 
of vegetation 

Hp_75 75th percentile of 
vegetation height 

𝑛 = (
75

100
) × 𝑁, where 𝑁 = number of 

normalized z values (sorted from smallest to 
largest), and 𝑛 = ordinal rank of a given value 

Capturing the 75th percentile of 
normalized z within a grid cell 

Density of vegetation in the upper 
stratum 

Hp_95 95th percentile of 
vegetation height 

𝑛 = (
95

100
) × 𝑁, where 𝑁 = number of 

normalized z values (sorted from smallest to 
largest), and 𝑛 = ordinal rank of a given value 

Capturing the 95th percentile of 
normalized z within a grid cell 

Height of the vegetation canopy surface 
and tree tops, accounting for the effect 
of outliers 

     
Vegetation cover     
PPR Pulse penetration ratio 𝑁𝑔𝑟𝑜𝑢𝑛𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
 

Ratio of number of ground points 
(𝑁𝑔𝑟𝑜𝑢𝑛𝑑) to the total number of 

points (𝑁𝑡𝑜𝑡𝑎𝑙) within a grid cell 

Openness of vegetation, canopy 
fractional cover, laser penetration index 

Density above mean z Canopy cover above 
mean height 

100 ×  ∑[𝑧𝑖 > 𝑧̅]/𝑁 where 𝑧𝑖 are all 
normalized z values that are larger than the 

Number of returns above mean 
height within a grid cell 

Density of upper vegetation layer 
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mean vegetation height 𝑧̅ within a grid cell, and 
𝑁 the total number of normalized z values 

BR_1 Density of vegetation 
points below 1 m 

𝑁𝑧<1/𝑁𝑡𝑜𝑡𝑎𝑙  Ratio of number of vegetation points 
(<1 m) to the total number of 
vegetation points within a grid cell 

Density of vegetation <1 m 

BR_1_2 Density of vegetation 
points between 1–2 m 

𝑁1<𝑧<2/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(between 1–2 m) to the total number 
of vegetation points within a grid cell 

Density of vegetation in 1–2 m layer 

BR_2_3 Density of vegetation 
points between 2–3 m 

𝑁2<𝑧<3/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(between 2–3 m) to the total number 
of vegetation points within a grid cell 

Density of vegetation in 2–3 m layer 

BR_3 Density of vegetation 
points above 3 m 

𝑁𝑧>3/𝑁𝑡𝑜𝑡𝑎𝑙 
 

Ratio of number of vegetation points 
(>3 m) to the total number of 
vegetation points within a grid cell 

Density of vegetation above 3 m 

BR_3_4 Density of vegetation 
points between 3–4 m 

𝑁3<𝑧<4/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(between 3–4 m) to the total number 
of vegetation points within a grid cell 

Density of vegetation in 3–4 m layer 

BR_4_5 Density of vegetation 
points between 4–5 m 

𝑁4<𝑧<5/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(between 4–5 m) to the total number 
of vegetation points within a grid cell 

Density of vegetation in 4–5 m layer 

BR_5 Density of vegetation 
points below 5 m 

𝑁𝑧<5/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(<5 m) to the total number of 
vegetation points within a grid cell 

Density of vegetation in understory 
layer (<5 m) 

BR_5_20 Density of vegetation 
points between 5–20 m 

𝑁5<𝑧<20/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(between 5–20 m) to the total 
number of vegetation points within a 
grid cell 

Density of vegetation in 5–20 m layer 

BR_20 Density of vegetation 
points above 20 m 

𝑁𝑧>20/𝑁𝑡𝑜𝑡𝑎𝑙 Ratio of number of vegetation points 
(>20 m) to the total number of 
vegetation points within a grid cell 

Density of vegetation above 20 m 

     
Vegetation structural complexity    
Coeff. var. z Coefficient of variation 

of vegetation height 
1

𝑍
×  √∑

(𝑧𝑖−𝑧̅)2

𝑁−1
 where 𝑧̅ is the mean vegetation 

height, 𝑧𝑖 all normalized z values in a grid cell, 
and 𝑁 the number of normalized z values 

Coefficient of variation of normalized 
z within a grid cell 

Vertical variability of vegetation 
distribution (ratio of the standard 
deviation to the mean) 

Shannon index Shannon index based 
on entropy  

− ∑ 𝑝𝑖 × 𝑙𝑜𝑔2𝑝𝑖𝑖  where 𝑝𝑖 = 𝑁𝑖/ ∑ 𝑁𝑗𝑗  and 𝑁𝑖 

the points in bin 𝑖 

The negative sum of the proportion 
of points within 0.5 m height layers 
multiplied with the logarithm of the 
proportion of points within 0.5 m 
height layers within a grid cell 

Complexity and evenness of vertical 
vegetation distribution, sometimes 
referred to as foliage height diversity 
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Kurtosis of H_veg. Kurtosis of vegetation 
height 

1

𝜎4
× ∑(𝑧𝑖 − 𝑧̅)4/𝑁 where 𝑧𝑖 are the normalized 

z values in a grid cell, 𝑧̅ the mean of normalized 
z values, and 𝑁 the total number of normalized 
z values 

Kurtosis of normalized z within a grid 
cell 

Vertical distribution (‘tailedness’) of 
vegetation 

Roughness of veg. 
height 

Roughness of 
vegetation 

√∑(𝑅𝑖 − 𝑅̅)2/(𝑁 − 1) where 𝑅𝑖 are the 
residual after plane fitting, and 𝑅̅ the mean of 
residuals 

Standard deviation of the residuals of 
a locally fitted plane within a cylinder 

Small-scale roughness and variability of 
vegetation 

Skewness of veg. height Skewness of vegetation 
height 

1

𝜎3 × ∑(𝑧𝑖 − 𝑧̅)3/𝑁 where 𝑧𝑖 are the normalized 

z values in a grid cell, 𝑧̅ the mean of normalized 
z values, and 𝑁 the total number of normalized 
z values 

Skewness of normalized z within a 
grid cell 

Vertical distribution (asymmetry) of 
vegetation 

Std. dev. of veg. height Standard deviation of 
vegetation height 

√∑
(𝑧𝑖−𝑧̅)2

𝑁−1
 where 𝑧̅ is the mean vegetation 

height, 𝑧𝑖 all normalized z values in a grid cell, 
and 𝑁 the number of normalized z values 

Standard deviation of normalized z 
within a grid cell 

Vertical variability (i.e. amount of 
variation around mean) of vegetation 
distribution 

Variance of veg. height Variance of vegetation 
height 

∑
(𝑧𝑖−𝑧̅)2

𝑁−1
 where 𝑧̅ is the mean vegetation height, 

𝑧𝑖 all normalized z values in a grid cell, and 𝑁 
the number of normalized z values 

Variance of normalized z within a 
grid cell 

Vertical variability of vegetation 
distribution (dispersion around mean 
height) 
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10.3 Text A1: Assessing the robustness of LiDAR vegetation metrics 
 
To assess how LiDAR vegetation metrics might be affected by varying point densities, we 
calculated a set of 25 LiDAR vegetation metrics representing different aspects of vegetation 
height, vegetation cover and structural complexity (Annex Table A2). The metrics were 
calculated with the Laserchicken software (Meijer et al., 2020) using the Laserfarm 
workflow (Kissling et al., 2022) and the Dutch AHN4 dataset from the years 2020–2022 with 
a point density of 20–30 points/m2 (Annex Table A1). The implementation of the Laserfarm 
workflow and the metric calculation was similar to the country-wide processing of the AHN3 
point cloud (Kissling et al., 2023; Kissling et al., 2022), except that the metrics were only 
calculated for a selected number of plots. 
 We developed a workflow that combined Natura 2000 shapefiles from the European 
Environmental Agency and LAZ files from the AHN4 dataset (Annex Figure A1). We randomly 
placed 100 plots (i.e., squared polygons around centre points) of 1 × 1 m resolution or 10 × 
10 m resolution within Dutch Natura 2000 sites. Focus was on Natura 2000 sites which 
predominantly contain woodland habitats (Annex Figure A2). To do this, we downloaded 
the Natura 2000 vector layer (version 2021 revision 1, Oct. 2022) from the European 
Environmental Agency (https://www.eea.europa.eu/en/datahub/datahubitem-
view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4) with its associated metadata and used the 
available habitat information (i.e., habitat codes, their percentage and description) to map 
Natura 2000 sites in the Netherlands (Annex Figure A2a). The habitat ‘woodland’ was 
dominant in 42 (21%) of the 198 recognized Natura 2000 sites in the Netherlands. This 
represented broad-leaved deciduous woodlands (habitat code N16) and coniferous 
woodlands (N17), but also mixed woodlands (N19) and one plantation (N20) (Annex Figure 
A2b). Woodlands were the most prevalent habitat class in those sites (i.e., largest 
percentage cover), with the majority of sites (90%) having a woodland cover of >38% (Annex 
Figure A2b). 
 Random placement of plots within the woodland Natura 2000 sites of the 
Netherlands was done using the “Create Random Points” tool of ArcGIS Pro 3.0 (ESRI, 
Redlands, California). The centre of each plot was then exported from ArcGIS and imported 
into the R programming software using the R package ‘sf’. The R package ‘dplyr’ was used to 
generate square polygons of the desired resolutions (either 1 × 1 m resolution or 10 × 10 m) 
around the centre points. The square polygons were subsequently saved as ESRI shapefiles. 
These were then used to clip the LiDAR point clouds from AHN4. We acquired the AHN4 
point cloud dataset from the repository of the PDOK webservices 
(https://app.pdok.nl/viewer/). The square polygons were loaded into memory and their 
spatial position was compared with the bounding box of the AHN4 LAZ files (Annex Figure 
A1), using two C++ libraries (i.e., ‘shapefile’ and ‘LasTools’). When the bounding box 
intersected with a specific square polygon, only points inside the polygon were parsed and 
clipped. In case the square polygon was fully inside the bounding box (no intersection), all 
points within the polygon were clipped. Clipped points were exported as a LAZ file and used 
to calculate the 25 LiDAR vegetation metrics with the Laserfarm workflow. Since not all 
locations of the 100 randomly placed plots had points, the actual sample sizes were slightly 
smaller than 100, i.e., 94 plots for the 1 × 1 m resolution and 96 plots for the 10 × 10 m 
resolution, respectively. 

Metrics were calculated with the original point density of the Dutch AHN4 dataset 
(20–30 points/m2, see Annex Table A1) and with six randomly down-sampled point clouds 

https://www.eea.europa.eu/en/datahub/datahubitem-view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4
https://www.eea.europa.eu/en/datahub/datahubitem-view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4
https://app.pdok.nl/viewer/
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for the same plots (with 20, 15, 10, 5, 2 and 1 points/m2, respectively). All points of each 
plot were first reshuffled and then the relevant number of points was randomly picked (e.g., 
500 points in a 10 × 10 m plot to obtain a point density of 5 points/m2). This was done using 
the C++ library ‘algorithm’ with the random seeds generator. The 25 LiDAR vegetation 
metrics were then calculated for the 1 × 1 m plots (Figure 5 main text) and the 10 × 10 m 
plots (Annex Figure A3). 
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10.4 Figure A1: Workflow for calculating LiDAR metrics within Natura 2000 
sites 

 

 
Figure A1: Workflow for calculating LiDAR metrics within specific plots that are randomly 
located within Natura 2000 sites. The workflow combines shapefiles from Natura 2000 
sites with LAZ files from LiDAR point clouds, and then clips the points that fall inside 
specific polygons (e.g., plots of 1 × 1 m or 10 × 10 m resolution). The clipped points are 
then used to calculate LiDAR vegetation metrics for the original point density and for six 
down-sampled point densities.  
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10.5 Figure A2: Dutch Natura 2000 sites with woodland habitats 
 

 
Figure A2: Dutch Natura 2000 sites with woodland habitats (n = 42). (a) Spatial 
distribution within the Netherlands. (b) Frequency of different woodland habitat classes. 
(c) Frequency distribution of the percentage cover of woodlands. 



D4.2 Challenges for upscaling habitat condition metrics 
 

 40 

10.6 Figure A3: Effect of point density variation on LiDAR vegetation metrics 
 

 
Figure A3: Twenty-five LiDAR vegetation metrics (blue: height metrics, green: cover metrics, 
orange: structural complexity metrics) calculated with different point densities across plots 
of 10 × 10 m resolution (n = 96) in woodland habitats of the Netherlands. Point densities 
were down-sampled from the original Dutch AHN4 dataset (‘ori.’) to six lower point 
densities (note the inverted x-axes). Boxes represent the interquartile range, horizontal red 
lines the medians, whiskers extend to the 5th and 95th percentiles, and outliers are plotted 
as dots. See Annex Text A1 for methodological details and Annex Table A2 for metric 
explanations. 


