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Performance, effectiveness and computational efficiency of powerline extraction 
methods for quantifying ecosystem structure from light detection and ranging
Yifang Shi a,b and W. Daniel Kisslinga,b

aInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands; bLifeWatch ERIC, Virtual 
Laboratory & Innovations Center (VLIC), University of Amsterdam, Faculty of Science, Amsterdam, Netherlands

ABSTRACT
National and regional data products of the ecosystem structure derived from airborne laser scanning 
(ALS) surveys with Light Detection And Ranging (LiDAR) technology are essential for ecology, 
biodiversity, and ecosystem monitoring. However, noises like powerlines often remain, hindering 
the accurate measurement of 3D ecosystem structures from LiDAR. Currently, there is a lack of 
studies assessing powerline noise removal in the context of generating data products of ecosystem 
structures from ALS point clouds. Here, we assessed the (1) performance and accuracy, (2) effective-
ness, and (3) time efficiency and execution time of three powerline extraction methods (i.e. two 
point-based methods based on deep learning and eigenvalue decomposition, respectively, and one 
hybrid method) for removing powerline noise when quantifying 3D ecosystem structures in land-
scapes with varying canopy heights and vegetation openness. Twenty-five LiDAR metrics represent-
ing three key dimensions of the ecosystem structure (i.e. vegetation height, cover, and vertical 
variability) across 10 study areas in the Netherlands were used for our assessment. The deep learning 
method had the best performance and showed the highest accuracy of powerline removal across 
various landscape types (average F1 score = 96%), closely followed by the hybrid method (average F1 
score = 95%). In contrast, the accuracy of the eigenvalue decomposition method was lower (average 
F1 score = 82%) and depended on landscape context and vegetation composition (e.g. the F1 score 
decreased from 96% to 63% when the average canopy height increased across landscapes). 
Powerline noise removal had the highest effectiveness (i.e. generating LiDAR metrics closest to 
those derived from manually labeled ground truth data) for LiDAR metrics capturing height and 
cover of low- and high-vegetation layers. Time efficiency (processed points per second) was highest 
for the eigenvalue decomposition method, yet the hybrid method reduced the execution time by >  
50% compared to the deep learning method (ranging from 20% to 89% in study areas with different 
landscape composition). Based on our findings, we recommend the hybrid method for upscaling 
powerline removal on multi-terabyte ALS datasets to a regional or national extent because of its high 
accuracy and computational efficiency. Remaining misclassifications in LiDAR metrics could be 
further minimized by improving the training dataset for deep learning models (e.g. including various 
shapes of transmission towers from different datasets). Our findings provide novel insights into the 
performance of different powerline extraction methods, how their effectiveness varies for improving 
vegetation metrics and mapping the 3D ecosystem structure from LiDAR, and their computational 
efficiency for upscaling powerline removal in multi-terabyte ALS datasets to a national extent.
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1. Introduction

Timely and accurate monitoring of ecosystem 
structures is increasingly needed to support ecologi-
cal research, biodiversity policy, and habitat manage-
ment (Eitel et al. 2016; Potapov et al. 2021; Wulder 
et al. 2012). Light Detection And Ranging (LiDAR), an 
active remote sensing technique, allows us to map 
vegetation structures from 3D point clouds with very 
high details (Asner et al. 2014; LaRue et al. 2020). An 
increasing number of countries have incorporated 
airborne laser scanning (ALS) campaigns into their 

national monitoring programs, providing massive 
amounts of 3D point clouds at regional or national 
extents (Kissling et al. 2022; Moudrý et al. 2023; 
Valbuena et al. 2020). Processing and extracting infor-
mation from these 3D point clouds allows users not 
only to map terrain properties, aboveground biomass, 
and forest carbon at high resolution (Huang et al.  
2019; Tang et al. 2021) but also the 3D structure of 
ecosystems (Almeida et al. 2021; Assmann et al. 2022; 
Kissling et al. 2023). However, pre-classification attri-
butes of 3D point clouds delivered by data providers 
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often do not unambiguously differentiate vegetation 
from other objects, which can lead to biases and 
errors in derived data products of the ecosystem 
structure (Kissling et al. 2023). Minimizing such biases 
and errors when generating data products is there-
fore crucial for accurately quantifying ecosystem 
structure.

LiDAR point clouds typically come with a pre- 
classification that defines for each individual point to 
which class it belongs (i.e. which object has reflected 
the laser pulse), for instance, by using the standard 
point classes from the American Society for 
Photogrammetry & Remote Sensing (ASPRS 2019). 
However, given the complexity of object classes and 
structures, the pre-classification information usually 
only contains a limited number of classes, e.g. 
“ground,” “building,” “water,” and “unclassified.” 
Although this is sufficient for mapping terrain and 
buildings (i.e. the intended purpose of many national 
ALS flight campaigns), such classes may not have 
enough thematic information for ecological applica-
tions. For instance, misclassifications of ground and 
non-ground points can have a strong effect on quan-
tifying vegetation structure and terrain properties 
(Deibe, Amor, and Doallo 2020; Simpson, Smith, and 
Wooster 2017). Similarly, the accuracy of vegetation 
mapping can be influenced by confusing vegetation 
with other elevated objects such as building roofs or 
powerlines (Morsy, Shaker, and El-Rabbany 2022). 
LiDAR-derived vegetation metrics (e.g. maximum or 
95th percentile of vegetation height) can also be 
biased if classes such as the “unclassified” class (or 
even the pre-defined “vegetation” classes) contain 
points from human objects, such as ships on water 
and fences around buildings (Kissling et al. 2023). 
A typical example of human objects is powerlines, 
which can cause erroneously high vegetation height 
values in LiDAR metrics capturing the canopy layer of 
ecosystems (Guo et al. 2021; Roussel, Achim, and Auty  
2021). Removing such noises is crucial for the accurate 
quantification of ecosystem structure from LiDAR 
point clouds.

A range of methods for powerline extraction from 
airborne LiDAR data exist. They can be divided into 2D 
grid-based or 3D point-based methods (Awrangjeb  
2019; Sohn, Jwa, and Kim 2012). Two-dimensional 
grid-based methods first generate 2D pixels from 3D 
point clouds by calculating geometric features (e.g. 

eigenvalues, normalized height, or intensity) within 
a defined neighborhood. Given the linear character-
istics of powerlines, the derived 2D images can then 
be used as input for pattern recognition algorithms 
(e.g. Hough transform or Radon transform) that allow 
powerline classification (Wang, Peethambaran, and 
Chen 2018; Yang and Kang 2018; Zhu and Hyyppä  
2014). Some studies also apply machine learning 
algorithms (e.g. Random Forest and JointBoost) to 
classify powerlines using 2D featured images derived 
from 3D point clouds (e.g. Guo et al. 2015; Kim and 
Sohn 2013). A difficulty of the 2D grid-based methods 
is to separate objects (e.g. vegetation and building) 
that simultaneously occur with powerlines in the 
same grid cell. In contrast, 3D point-based methods 
identify powerlines by detecting elongated linear 
objects from the 3D point cloud directly, with the 
advantage that objects which overlap with power-
lines (e.g. trees and shrubs) can be labeled separately 
and subsequently decomposed, e.g. by using their 
eigenvalues (Roussel et al. 2020). More recently, 
deep learning algorithms have been explored for 3D 
point cloud classification, demonstrating an impress-
ive classification performance for LiDAR point clouds 
and enabling feature extraction and class labeling for 
each single point using neural networks (Qi et al.  
2017; Wen et al. 2021; Zhao et al. 2021). However, 
this usually comes with long execution times, e.g. for 
labeling each individual point in large datasets (Li, 
Kahler, and Pfeifer 2021). There are also hybrid meth-
ods that integrate both 2D grid-based and 3D point- 
based methods to identify powerlines, aiming at 
decreasing execution times while retaining high clas-
sification accuracy (Awrangjeb 2019; Wang, 
Peethambaran, and Chen 2018). While several studies 
have focused on improving extraction accuracy (Jung 
et al. 2020; Matikainen et al. 2016), it remains mostly 
unexplored how different powerline extraction meth-
ods perform in the context of improving LiDAR- 
derived vegetation metrics.

Three main aspects are important for evaluating 
powerline noise removal in the context of generating 
national or regional data products of ecosystem struc-
ture from ALS point clouds. First, the performance and 
accuracy of different extraction methods might 
depend on the context of neighboring vegetation, on 
powerline characteristics, or on the presence of other 
objects in the landscape (Jung et al. 2020; Peng et al.  
2019). Second, powerline extraction methods might 
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show differences in their effectiveness, i.e. how well 
LiDAR metrics of the ecosystem structure are improved 
after powerline noise removal. It could depend on the 
surrounding vegetation or on which aspects of the 
ecosystem structure are quantified (e.g. vegetation 
height, canopy cover, or vegetation density in different 
strata). Third, the computational efficiency of each 
method might differ. Grid-based methods can have 
short execution times as they are based on computa-
tionally efficient algorithms for 2D images (Awrangjeb  
2019). In contrast, deep learning algorithms (e.g. Li 
et al. 2018; Qi et al. 2017; Thomas et al. 2019) often 
suffer from a high computational demand (i.e. a high 
time and memory consumption due to calculating 
features for each point from neighboring points), espe-
cially when applied to large-scale ALS datasets (Jung 
et al. 2020; Liu et al. 2023; Weinmann et al. 2015). 
Hybrid methods combine both 2D grid-based and 3D 
point-based methods and thus can benefit from the 

advantages of both methods (e.g. lower number of 
processed points and faster execution times). To our 
knowledge, there are currently no studies that provide 
a comprehensive evaluation of all three aspects of 
powerline extraction methods (e.g. performance, effec-
tiveness, and computational efficiency) in the context 
of generating data products of ecosystem structure 
from ALS point clouds.

Here, we aim to evaluate the performance, effec-
tiveness, and computational efficiency of three 
powerline extraction methods (i.e. deep learning, 
eigenvalue decomposition, and a hybrid method) for 
powerline noise removal from 25 LiDAR metrics repre-
senting vegetation height, cover, and vertical varia-
bility (Figure 1). We tested three hypotheses: (H1) 
deep learning shows the best accuracy compared to 
other methods and performs well in landscapes with 
different characteristics; (H2) the effectiveness of 
powerline extraction methods is highest for LiDAR 

Figure 1. Workflow for evaluating the performance, effectiveness, and computational efficiency of powerline noise removal from 25 
LiDAR metrics capturing vegetation height, vegetation cover, and vertical variability of vegetation. Note that the PointCNN model 
(applied in the deep learning and hybrid method) uses independent datasets for training and prediction. The accuracy of the three 
powerline extraction methods is tested with manually labeled ground truth data (performance evaluation).
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metrics capturing vegetation height and cover, espe-
cially in landscapes with low-stature vegetation 
(because powerline points can then strongly bias 
vegetation height and cover values); and (H3) the 
computational efficiency of the deep learning 
method is low due to the high number of processed 
points and its execution time for labeling and calcu-
lating neighborhood features for each point, but the 
hybrid method (which combines 2D grid-based and 
3D point-based methods) can substantially reduce 
the execution time due to the lower number of points 
being processed. Our work contributes to under-
standing how different powerline extraction methods 

perform in removing biases and noises in LiDAR- 
derived vegetation metrics and what their potential 
is for upscaling, i.e. generating data products of the 
ecosystem structure from multi-terabyte point clouds 
at a national extent.

2. Materials and methods

2.1 Study areas

We selected 10 study areas (500 m × 500 m per area) in 
the Netherlands (Figure 2(a)) for assessing powerline 
noise removal. We chose those areas to represent (1) 

Figure 2. Locations and characteristics of the 10 study areas (A‒J) in the Netherlands. (a) Spatial distribution and LiDAR point cloud 
visualization (colored by normalized Z values) of each study area. (b) Canopy height and landscape openness of each study area 
characterized by two 10-m resolution LiDAR metrics (95th percentile of vegetation height and pulse penetration ratio, respectively). 
These metrics were generated from manually labeled point clouds (see detailed description in section 2.2).
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powerlines in each scene, (2) sites that are spread 
across the country (Figure 2(a)), (3) landscapes with 
different canopy heights and vegetation openness 
(Figure 2(b)), and (4) variation in landcover types and 
other vegetation and powerline characteristics 
(Table 1). The total number of LiDAR points per area 
varied between 2.7 and 5.7 million (Table 1). 
Powerlines were present in each study area, partially 
overlapping with vegetation (Figure 2(a)), and the 
number of powerline pixels (i.e. powerlines being pre-
sent at 10 × 10 m resolution) varied from 237 to 698 
across the 10 study areas (Table 1). Powerline points 
were not separated from vegetation points in the pre- 
classification of the raw LiDAR point clouds, resulting in 
abnormal vegetation height estimates (e.g. Z values 
>50 m, Table 1).

2.2 LiDAR data preparation

We used the pre-processed raw point clouds from 
airborne LiDAR as input into our workflow 

(Figure 1). These were collected during the third 
national ALS campaign of the Netherlands (AHN3, 
Actueel Hoogtebestand Nederland). The campaign 
was conducted between 2014 and 2019 in the leaf- 
off season covering the whole Netherlands 
(~34,000 km2). Raw point clouds are available from 
the AHN-viewer (https://www.ahn.nl/ahn-viewer). 
The average point density of AHN3 is 10‒16 
points/m2 with an overall vertical accuracy of 5  
cm. Information stored for each point contains X, 
Y, Z, intensity, return number, number of returns, 
classification, scan angle rank, source ID, and GPS 
timestamp. The country-wide AHN3 data were pre- 
processed and delivered by “Rijkswaterstaat” (the 
Dutch Ministry of Infrastructure and Water 
Management), providing the pre-classification 
code for each point: unclassified (1), ground (2), 
building (6), water (9), and others (26). In the raw 
point cloud, points belonging to powerlines and 
vegetation are all defined as unclassified (1). We 
created digital terrain models (DTMs) at 1 m 

Table 1. Detailed characteristics of 10 study areas (A‒J) in the Netherlands×.

Characteristics*
Derived 

from A B C D E F G H I J

Size (ha) Pixels 25 25 25 25 25 25 25 25 25 25
Range of raw 

Z value (m)
Points −1‒46 −2‒57 −3‒54 23‒80 10‒72 10‒56 14‒76 19‒81 7‒56 −2‒52

Range of 
normalized 
Z value (m)

Points 0‒43 0‒58 0‒55 0‒52 0‒61 0‒44 0‒60 0‒59 0‒47 0‒54

Height range of 
powerline (m)

Points 11‒43 15‒54 16‒51 8‒50 15‒59 10‒42 13‒58 14‒55 8‒46 13‒54

Height range of 
vegetation (m)

Points 0‒5 0‒32 0‒28 0‒25 0‒26 0‒26 0‒33 0‒38 0‒41 0‒32

Number of 
powerline 
points

Points 47,381 16,777 20,693 78,545 28,008 23,541 22,874 19,782 16,171 15,999

Number of total 
points

Points 3,303,321 2,652,288 3,475,929 5,339,845 4,948,259 5,270,261 4,664,596 5,797,241 4,531,694 5,682,735

Point density 
(points/m2)

Points 13.1 11.1 14.0 20.9 21.2 23.2 18.5 23.0 18.1 23.5

Mean of 95th 

percentile of 
vegetation 
height

Pixels 0.28 3.98 4.67 5.48 8.75 10.39 15.05 19.93 17.27 13.65

Mean of pulse 
penetration 
ratio

Pixels 0.98 0.80 0.80 0.83 0.54 0.48 0.43 0.40 0.70 0.65

Number of 
powerline 
pixels

Pixels 442 284 370 698 283 247 334 237 288 251

Main landcover 
types

Visual  
inspection

Grassland Bare land, 
buildings, 
vegetation 

patches

Road, 
buildings, 
vegetation 

patches

Buildings, 
vegetation 

patches,

Industrial 
buildings, 
vegetation 

patches

Forest, 
water, 
road

Forest, 
road

Forest, 
road

Forest, 
road

Forest, 
grassland

*Size (ha) represents 500 m × 500 m study areas. The range of raw Z values, the number of total points, and the point density were derived from raw LiDAR 
point clouds (AHN3). The range of normalized Z values, the height range of powerlines, the height range of vegetation, and the number of powerline points 
were calculated from manually labeled point clouds (ground truth). The mean values of two LiDAR metrics (95th percentile of vegetation height and pulse 
penetration ratio, respectively) and the number of powerline pixels were calculated from pixels at 10 × 10 m resolution (derived from manually labeled point 
clouds). Landcover types were interpreted through visual inspection of the point clouds.
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resolution and normalized the point clouds using 
the LAStools software (version 210,720, rapidlasso 
GmbH, https://rapidlasso.com/LAStools/) for each 
study area.

We manually labeled every point in the raw point 
clouds of the 10 study areas (approximately 45 million 
points in total) into six categories: vegetation (1), 
ground (2), buildings (6), water (9), powerline (14), 
and others (26) (e.g. bridges, cars). This was done 
using the ArcGIS Pro interactive editing tool for LAS 
classification (see https://pro.arcgis.com/en/pro-app 
/latest/help/data/las-dataset/interactive-las-class- 
code-editing.htm). The manually labeled point clouds 
were then used as ground truth (Figure 1), especially 
to (1) characterize the powerlines and vegetation in 
each study area (section 2.1), (2) evaluate the perfor-
mance of powerline removal methods at the point 
level (section 2.4), and (3) generate LiDAR-derived 
vegetation metrics at 10 m resolution for assessing 
the effectiveness of the powerline extraction methods 
(section 2.5).

2.3 Methods for powerline extraction

We tested two point-based methods and one hybrid 
method for extracting powerlines. The first point- 
based method (deep learning method) introduces 
a convolutional neural network (CNN) approach to 
feature learning from well-labeled point clouds and 
classifies the target point clouds into different classes 
(e.g. powerlines, vegetation, and buildings). 
The second point-based method (eigenvalue 
method) uses eigenvalue decomposition of point 
clouds and labels the linearly distributed points as 
powerlines. The third method (hybrid method) was 
developed here and employs a 10-m resolution 
GeoTIFF layer of vegetation height to subset potential 
candidate powerline points from the original point 
clouds and then uses the trained CNN algorithm to 
classify the candidate powerline points into defined 
classes.

2.3.1 Point-based method using deep learning
The PointCNN proposed by Li et al. (2018) is a deep 
learning generalization of CNNs which shares the 
design of hierarchical convolution on 2D CNNs (grid- 
based) and generalizes it to 3D point clouds. The core 
χ-Conv operator implemented in PointCNN is 

recursively applied to aggregate information from 
neighboring points into a subset of representative 
points assigning featured information (Li et al. 2018). 
While the output features are defined by the local 
(relative) coordinates of neighboring points and 
their associated features, they are also weighted and 
permuted by the χ-transformation which is jointly 
learned across all neighborhoods. In this way, 
PointCNN is also capable of handling point clouds 
with or without additional features in a robust and 
uniform fashion (Li et al. 2018).

We employed the Dayton Annotated Laser Earth 
Scan (DALES) dataset (from Canada) to train the 
PointCNN model and applied the trained model to 
the AHN3 dataset (from the Netherlands) for predic-
tion (Figure 1). This approach provided a robust vali-
dation for testing spatial transferability (from Canada 
to the Netherlands) using a point cloud dataset for 
prediction that is independent of the training dataset 
and has different characteristics (e.g. different point 
density and other sensor type). The DALES dataset 
that we used for training is a large annotated point 
cloud dataset, which serves as an important bench-
mark for evaluating deep learning algorithms applied 
to 3D point clouds (Varney, Asari, and Graehling  
2020). It consists of more than 500 million hand- 
labeled point clouds obtained from ALS across multi-
ple landscape types in British Columbia, Canada, and 
is currently the most extensive annotated aerial point 
cloud dataset that is publicly available (Varney, Asari, 
and Graehling 2020). The DALES dataset is delivered 
with separate training and testing tiles (40 tiles in 
total) with roughly a 70/30 percentage (i.e. 29 tiles 
for training and 11 tiles for testing). The training and 
testing scenes have a similar distribution across all 
labeled categories and come with a minimum and 
an average point density of 20 points/m2 and 50 
points/m2, respectively. There are eight classification 
categories in the dataset: ground (1), vegetation (2), 
cars (3), trucks (4), powerlines (5), fences (6), poles (7), 
and buildings (8).

We first trained the PointCNN model using 29 
selected DALES training tiles and validated the 
model using the remaining 11 DALES testing tiles. 
During training, we set the number of epoch to 20, 
and selected the model with the highest accuracy for 
prediction (F1 score of 88% for classifying the power-
line category based on an evaluation with the DALES 
testing tiles). We then used the trained PointCNN 
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model to predict the class of each point from the 10 
study areas (AHN3 dataset) into the abovementioned 
eight classification categories. We chose to train the 
model with the most common attributes of the point 
cloud (i.e. X, Y, and Z values) to prevent introducing 
unstandardized attributes (e.g. unnormalized inten-
sity or RGB values) into the training and prediction. 
We performed PointCNN model training and predic-
tion using the deep learning framework and arcgis. 
learn module within a Jupyter environment. General 
information on the PointCNN architecture and its 
implementation are also available from GitHub 
(https://github.com/yangyanli/PointCNN).

2.3.2 Point-based method using eigenvalue 
decomposition
The eigenvalue method (Figure 1) identifies clusters of 
points that are linearly distributed based on the three 
eigenvalues of each individual point using the k-near-
est neighbor method (Limberger and Oliveira 2015). 
Linear objects (e.g. powerlines) can then be segmented 
based on the criterion that one principal value is sig-
nificantly greater than the other two principal values, 

λ3 > th � λ2 AND λ3 > th � λ1 (1) 

where λ1, λ2, λ3 indicate the eigenvalues calculated for 
each point in ascending order and th is a given threshold 
value (Limberger and Oliveira 2015). We performed the 
eigenvalue calculation using the function segment_-
shapes() provided in the lidR package (Roussel et al.  
2020). Given the point density of AHN3 (average 10‒16 
points/m2) and the distribution pattern of powerline 
points, we set the threshold value (i.e. parameter th) 
varying from 4 to 20, and the number of neighboring 
points involved in the calculation (i.e. parameter k) vary-
ing from 6 to 40. Each combination of the parameters 
was tested, and the combination with the highest 
powerline detection rate was eventually selected as the 
final setting for each study area. A new attribute (“power-
line”) was then added to each point, indicating the 
segmentation result (powerline points = 1, others = 0).

2.3.3 Hybrid method
The hybrid method combined a 2D raster layer with the 
PointCNN model (Figure 1). In this method, a subset of 
the raw point clouds (candidate points) – based on 
intersecting a 2D grid height layer – was first selected 
and then used as input into the trained PointCNN model 
for powerline extraction. This should increase the 

computational efficiency while keeping extraction accu-
racy comparable to the deep learning method. We used 
the LiDAR metric 95th percentile of vegetation height 
(Hp95) derived from the raw AHN3 point clouds at 
a resolution of 10 m to generate a 2D mask for segment-
ing the candidate points. We chose Hp95 = 10 m as the 
height threshold for generating a binary mask because 
European regulations require to ensure at least 7‒10 m 
clearance beneath powerlines (Zhu and Hyyppä 2014). 
This suggests that high voltage powerlines should be 
>10 m high. This binary mask was then used to extract 
the subset of points for each study area. We then 
employed the trained PointCNN model (see section 
2.3.1) to classify the candidate points into the same 
eight categories as classified in the DALES dataset. 
Similar to the deep learning method, we only used the 
X, Y, and Z values as input attributes for the prediction.

2.4 Performance of powerline extraction methods

To test H1, we evaluated the performance of the three 
powerline extraction methods by calculating four accu-
racy measures (i.e. recall, precision, quality, and F1 score). 
Recall (Re) is a measure of completeness or quantity of 
correctly extracted powerline points. Precision (Pr) mea-
sures the exactness or quality of correctly extracted 
powerline points. Quality (Qu) gives an overall evaluation 
of the completeness and exactness of powerline extrac-
tion, and the F1 score gives the harmonic mean of Re 
and Pr (Yang and Kang 2018). These measures were 
calculated as 

Re ¼
TP

TP þ FN
(2) 

Pr ¼
TP

TP þ FP
(3) 

Qu ¼
TP

TP þ FP þ FN
(4) 

F1 ¼
2 � Pr � Re

Pr þ Re
(5) 

where TP is the amount of powerline points that are 
correctly identified as powerlines, FN is the amount of 
powerline points that are misidentified as others, and 
FP is the amount of other points that are misidentified 
as powerlines. The manually labeled points were used 
as ground truth to assess correct (true) or incorrect 
(false) classifications. Each accuracy measure was 
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calculated for each study area (n = 10) and compared 
with the average canopy height of each study area. 
Note that the accuracy calculations were done with-
out the transmission towers (i.e. powerline points 
only) because (1) the eigenvalue method is only 
designed to identify linear objects (i.e. powerlines) 
and (2) the shape of transmission towers differs 
between the training dataset (DALES from Canada) 
and the prediction dataset (AHN3 from the 
Netherlands) for the PointCNN model.

2.5 Effectiveness of powerline removal on LiDAR 
metrics

To test H2, we analyzed the effectiveness of powerline 
removal for 25 LiDAR metrics representing different 
aspects of vegetation height (7 metrics), vegetation 
cover (11 metrics), and vertical variability of vegeta-
tion (7 metrics) (see details in Appendix Table A1). For 
each metric, we compared their values after applying 
the three powerline extraction methods with the 
values derived from ground truth (manually labeled 
point clouds) and raw point clouds (with powerline 
noise) (Figure 1). All metrics were calculated at a 10 m 
resolution for each study area using a recently devel-
oped high-throughput workflow “Laserfarm” for gen-
erating geospatial data products of ecosystem 
structure from ALS point clouds (Kissling et al. 2022). 
Within each study area, we assessed only the pixels 
with powerlines, i.e. those 10-m resolution grid cells in 
which powerlines occurred (n = 3434 across all study 
areas).

2.6 Computational efficiency of powerline 
extraction methods

To test H3, we evaluated the computational effi-
ciency of the three powerline extraction methods 
(Figure 1). We estimated execution times for each 
study area using the Jupyter Notebook environment 
(for the deep learning and hybrid methods) and the 
R environment (for the eigenvalue method). This 
was done on a DELL XPS laptop with 2.40 GHz 
Intel Core i9 processor and 32 GB RAM and included 
loading the data, running the model/method, pre-
dicting the results and exporting the results. We 
further calculated the number of processed points 
for each method at each study area and the time 
efficiency (points/sec) of each method by dividing 

the amount of processed points by the execution 
time.

3. Results

3.1 Performance of powerline extraction methods

In line with our hypothesis H1, the deep learning 
method generally performed best in terms of accuracy 
(Figure 3(a–d)). It showed a high recall (94.52% ±  
4.13%), precision (98.61% ± 0.72%), quality (93.27% ±  
4.10%), and F1 score (96.47% ± 2.26%) across all 10 
study areas (Figure 3(a–d), Appendix Table B1). It also 
removed on average about 95% of all powerline points 
across the study areas (94.52% ± 4.12%, see Appendix 
Figure B1). The hybrid method also showed a very 
good performance, similar to the deep learning 
method (Figure 3(a–d)), with an equally high precision 
(98.93% ± 0.50%) and F1 score (95.10% ± 3.61%) and 
a slightly lower recall (91.76% ± 6.30%) and quality 
(90.84% ± 6.12%) (see Appendix Table B1). The hybrid 
method also removed a high proportion of powerline 
points across the study areas (91.76% ± 6.30%, see 
Appendix Figure B1). The eigenvalue method generally 
performed poorer than the other two methods 
(Figure 3(a–d)), with an overall lower recall (86.58% ±  
6.73%), precision (83.35% ± 16.80%), quality (71.41% ±  
14.40%), and F1 score (82.48% ± 10.07%) (see 
Appendix Table B1). It also showed a lower proportion 
of removed powerline points than the other two meth-
ods (86.58% ± 6.73%), except in areas E and G where it 
removed more points (see Appendix Figure B1). 
Moreover, the eigenvalue method showed a distinct 
decrease in precision, quality and F1 score in land-
scapes with tall canopies (areas F–J) compared to 
areas with low vegetation (areas A–E) (Figure 3(g)). In 
contrast, the deep learning and hybrid methods 
retained high accuracies in all study areas (Figure 3e 
and 3f), supporting the expectation of a good perfor-
mance in areas with different landscape characteristics 
(H1). The only exception was study area E, where the 
eigenvalue method outperformed the other two meth-
ods in recall, quality, and F1 score (Figure 3(e–g)).

3.2 Effectiveness of powerline removal on LiDAR 
metrics

Most of the 25 LiDAR metrics were improved after 
removing powerline noise (Figure 4). Especially for 
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Figure 3. Performance evaluation of powerline extraction methods. Accuracy of three methods (i.e. deep learning, hybrid, and 
eigenvalue method) as quantified by (a) recall, (b) precision, (c) quality, and (d) F1 score. All four accuracy measures together along 
a gradient of canopy height, shown separately for (e) deep learning, (f) hybrid, and (g) eigenvalue method. Dots with different colors 
indicate the 10 different study areas (A‒J). Different line types indicate the different accuracy measures (recall, precision, quality, and 
F1 score).
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Figure 4. Effectiveness of powerline removal on 25 LiDAR metrics of ecosystem structure. Metrics after powerline removal (using the 
deep learning, hybrid, and eigenvalue method, respectively) are compared to metrics generated from ground truth (i.e. manually 
labeled point clouds) and metrics derived from the raw point clouds (i.e. with powerline noise). The metrics represent vegetation 
height (7 metrics), vegetation cover (11 metrics), and vertical variability of vegetation (7 metrics). See Appendix Table A1 for metric 
abbreviations. Box-and-whisker plots show the values of each metric calculated for pixels with powerlines (n = 3434) across the 10 
study areas. Boxes show the median and interquartile range, with whiskers (stippled lines) extending to 1.5 times the interquartile 
range and dots beyond.
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vegetation height (in line with H2), metrics improved 
substantially through the removal of abnormal 
Z values from raw cloud points (with powerline 
noise) by the deep learning and hybrid method, 
respectively (Figure 4(a)). For vegetation cover, the 
effectiveness of powerline extraction methods differed 
among LiDAR metrics (Figure 4(b)). For instance, effec-
tiveness was high for metrics capturing the density of 
vegetation points below 1 m or below 5 m 
(Figure 4(b)), supporting the idea that powerline 
points can strongly bias vegetation cover in the 
lower strata (H2). Effectiveness was also high for 
metrics capturing vegetation cover in the upper layer 
(e.g. the density of vegetation points within 5–20 m, 
above 3 m, or above 20 m, Figure 4(b)), but low for 
metrics capturing vegetation cover in the middle layer 
(e.g. within 3–4 m and 4–5 m, Figure 4(b)). Finally, the 
effectiveness of powerline extraction methods was 
much less pronounced on metrics representing the 
vertical variability of vegetation, except for the var-
iance of vegetation height (Hvar) (Figure 4(c)).

3.3 Computational efficiency of powerline 
extraction methods

In line with hypothesis H3, the computational effi-
ciency of the deep learning method was low 
because of the large number of points to be pro-
cessed (Figure 5(a)), the long execution time 
(Figure 5(b)), and its low time efficiency 
(Figure 5(c)). In contrast, the eigenvalue method 
was the most time-efficient method (Figure 5(c)), 
having a more than 20 times faster execution time 
than the deep learning method (Figure 5(b)). With 
larger data volumes and a higher number of pro-
cessed points, the execution time of both the deep 
learning and hybrid methods strongly increased 
(Appendix Table B2). However, compared to the 
deep learning method, the hybrid method reduced 
the total number of processed points by almost 
50% (Appendix Table B2). This resulted in 
a substantial reduction of the execution time 
(Figure 5(b)), supporting our initial expectation 
(H3). Compared to the deep learning method, the 
execution time reduction of the hybrid method 
ranged from 11% (in area G, densely vegetated 
landscape with tall canopy height) to 80% (in 
area C, open landscape with low canopy height) 
(Appendix Table B2).

4. Discussion

We evaluated the performance, effectiveness, and 
computational efficiency of three powerline removal 
methods for improving 25 LiDAR metrics of ecosys-
tem structure derived from ALS point clouds. The 
deep learning and hybrid methods (based on the 
PointCNN model) provided a consistently high 

Figure 5. Computational efficiency of three powerline extraction 
methods (i.e. deep learning, hybrid, and eigenvalue method) 
explained by (a) number of processed points, (b) execution time, 
and (c) time efficiency. Boxes show the median and interquartile 
range, with whiskers (stippled lines) extending to 1.5 times the 
interquartile range and dots beyond. The mean and standard 
deviation are given next to each boxplot.
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accuracy of powerline noise removal across study 
areas with different canopy heights and landscape 
openness, whereas the eigenvalue method had 
a poorer performance, but a higher time efficiency. 
Powerline removal was most effective in LiDAR 
metrics representing vegetation height as well as 
vegetation cover in low and upper vegetation layers. 
We further showed that the hybrid method can 
greatly reduce the execution time compared to the 
deep learning method, making it a computational- 
efficient and accurate method for upscaling power-
line removal to multi-terabyte ALS datasets at 
a national extent.

Deep learning is rapidly transforming the fields of 
Earth science (Reichstein et al. 2019) and ecology 
(Borowiec et al. 2022), and our results confirm the 
high potential of deep learning applications for 
point cloud classification (Bello et al. 2020; Guo et al.  
2021; Wen et al. 2021). By removing ~95% of the 
powerline points from the raw point clouds, the 
applied deep learning method (i.e. PointCNN) was 
highly successful, with an average accuracy of ~96% 
(across the four accuracy measures, i.e. recall, preci-
sion, quality, and F1 score). The impressive perfor-
mance of the PointCNN was even achieved using an 
independent test by training the model with a dataset 
from North America (i.e. Canada) and applying it to 
a dataset from Europe (i.e. the Netherlands), which 
has different characteristics (e.g. lower point density 
and other sensor types). The high accuracy of the 
PointCNN model is similar to the accuracy of other 
deep learning methods, e.g. the KPConv model pro-
posed by Thomas et al. (2019) and methods tested 
with UAV-based LiDAR datasets (Chen et al. 2022). 
Due to the linear and narrow attributes of powerlines, 
relatively high point densities are usually needed to 
achieve good results in powerline extraction 
(Matikainen et al. 2016). In our study, we obtained 
an average F1 score of 96.5% with a point density of 
10‒16 points/m2 (AHN3 dataset). Lower point densi-
ties (e.g. 4–7 points/m2) can result in a reduced per-
formance of deep learning methods for 3D point 
classification, e.g. an average F1 score of 61.5% 
when the PointCNN method is applied to the ISPRS 
benchmark dataset (Wen et al. 2021). On the other 
hand, deep learning methods applied to point clouds 
with higher point densities (e.g. >20 points/m2) typi-
cally show good performance of powerline extraction, 

e.g. an average F1 score of 97.1% when the DCPLD- 
Net method is applied to four datasets varying in 
point density from 22 to 120 points/m2 (Chen, Lin, 
and Liao 2022). We therefore expect that deep learn-
ing methods for powerline extraction show good 
performance with ALS datasets that have point den-
sities of 10‒20 points/m2 or above.

Compared to deep learning, the hybrid method 
also showed a high overall accuracy (average 94%), 
but a remarkable decrease in execution time. Other 
applications of hybrid methods also demonstrate 
a similar performance, such as the one proposed by 
Zhu and Hyyppä (2014), which successfully classified 
93% of powerline points from forested areas in 
Finland. This encourages the use of hybrid methods 
due to their high accuracy and simultaneously 
a reduced execution time. In contrast, the eigenvalue 
method generally performed poorer than the deep 
learning and the hybrid methods, except in relatively 
open landscapes with low vegetation (e.g. our study 
areas A‒C). While eigenvalue methods can success-
fully remove a large number of powerline points in 
certain situations (e.g. McLaughlin 2006), they also 
require additional parameter adjustments for optimi-
zation in different settings (e.g. different landscapes 
where powerlines occur or different characteristics of 
powerlines). This impairs their generalizability (Chen 
et al. 2022) for accurately detecting powerlines in 
different landscapes (e.g. Jwa and Sohn 2012; 
Nardinocchi, Balsi, and Esposito 2020) and hence lim-
its the application of eigenvalue methods for upscal-
ing to large areas with heterogeneous landscapes.

Our results show that the effectiveness of power-
line removal depends on which properties of the 
ecosystem structure are captured (i.e. vegetation 
height, cover, or vertical variability) and in which 
stratum (e.g. low, middle, or upper layer). For instance, 
vegetation height metrics were more strongly 
improved than other metrics after removing the 
abnormally large Z values from the powerlines. 
Metrics capturing the density of low vegetation (e.g. 
below 1 m) and upper vegetation (e.g. canopy cover 
above 20 m) also showed strong improvements after 
powerline removal, especially when compared to 
other vegetation cover metrics such as vegetation 
density of the middle layer (e.g. between 3–4 m and 
4–5 m). Airborne laser scanning often has difficulties 
in capturing low vegetation when canopies are dense, 
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suggesting that low strata with few vegetation points 
(e.g. below 1 m) are more prone to misclassifications 
(Assmann et al. 2022). When powerline points (usually 
above 10 m) are identified and removed from 

vegetation points in the upper vegetation layer, the 
calculation of vegetation cover below 1 m or above 
20 m can be greatly improved. In contrast, the effect 
of powerline removal on vegetation cover within 4–5  

Figure 6. Examples of misclassifications from powerline extraction methods in comparison with ground truth. (a) Examples of 
misclassifications in study area D when powerlines are close to tree crowns (deep learning and hybrid method) or when gaps between 
powerline points are relatively large (eigenvalue method). (b) Examples of misclassifications in study area E for powerlines above 
water (deep learning and hybrid method, but not eigenvalue method). Note that transmission towers were generally not correctly 
classified. For visualization purposes, the eight categories classified by the deep learning and hybrid methods were grouped into four 
classes: ground, vegetation, powerlines, water and others (including buildings, etc.). For the eigenvalue method, the result only 
contained two classes: powerline and others.
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m and on the pulse penetration ratio was almost 
neglectable. Overall, our results can provide guidance 
on which LiDAR metrics of the 3D ecosystem structure 
might be most biased if powerlines are present.

Upscaling powerline extraction to a national, multi- 
terabyte ALS dataset requires time efficient and highly 
accurate methods. In the Netherlands, there are 
approximately 24,500 km overhead high-voltage 
powerlines with 110‒380 kV (grid map available at: 
https://data.rivm.nl/apps/netkaart/). For the three 
tested methods, the hybrid method was the most 
promising candidate for upscaling because it is highly 
accurate across different landscapes and simulta-
neously reduces the computation time compared to 
the deep learning method. Note that the application 
stage of the deep learning method is already much 
more efficient than in its training stage: the training 
stage of the deep learning method costs on average 14 
h per epoch (around 100 h in total for training on 
350 million points), while in the application stage, it 
predicts (on average) 4.5 million points in 13 mins (see 
Appendix Table B2). Considering the total amount of 
points of the Dutch AHN3 data (~700 billion points) 
covering the whole Netherlands (~34,000 km2) 
(Kissling et al. 2023), we estimate that the hybrid 
method would require to process ~30 billion points 
when considering only the candidate powerline points 
after subsetting (i.e. applying a 10-m resolution binary 
mask with the 95th percentile of vegetation height >10  
m). The estimated CPU time for the hybrid method 
(~63 days) is about 5% of the time for the deep learning 
method applied to the whole country (~1373 days), 
and thus only slightly more than the eigenvalue 
method (~56 days). These estimated execution times 
are based on a single process local machine. When 
upscaling the process to a high-performance comput-
ing (HPC) or cloud environment, the execution time 
could be strongly shortened by parallelization and dis-
tributed processing with the benefit of multi-core CPU 
or multi-node GPU clusters (Kissling et al. 2022). For 
instance, the actual execution wall-time can be 
reduced to ~3 days when using a cluster of 10 virtual 
machines that each has two cores.

Some small biases and misclassifications will 
remain, independent of the applied powerline extrac-
tion method (Figure 6). The eigenvalue method failed 
to identify powerline points with a discontinuous 

distribution, i.e. when large gaps between neighbor-
ing powerline points occurred (Figure 6(a)). Both the 
deep learning and hybrid methods showed similar 
misclassifications, e.g. in areas where powerlines 
crossed water (Figure 6(b)). This probably stems 
from the input training data (DALES dataset) that 
has no powerlines above water (Varney, Asari, and 
Graehling 2020), resulting in misclassifications in the 
prediction. A general challenge for the classification 
was the lack of identification of transmission towers 
(Otcenasova, Hoger, and Altus 2014) (Figure 6). Only 
very few transmission towers are included in the 
training dataset (DALES dataset) and the shape of 
transmission towers differs between Canada and the 
Netherlands (see Appendix Figure C1). A future solu-
tion could be to collect more training samples to 
capture various shapes of transmission towers, 
which then can improve the capability of the 
PointCNN model to identify them.

5. Conclusion

Country-wide airborne LiDAR data provide great 
opportunities for generating high-quality metrics of 
ecosystem structure across large spatial extents. 
However, powerlines can introduce biases and noises 
into LiDAR metrics of vegetation height, cover, and 
vertical variability. We show that deep learning mod-
els in combination with grid-based approaches can 
provide high accuracy and simultaneously reduce 
execution times compared to the deep learning 
method. This makes the hybrid methods 
a computational-efficient and accurate approach for 
upscaling powerline removal to a national extent. 
Although the eigenvalue method generally per-
formed poorer than the deep learning and the hybrid 
methods, it can still achieve high accuracy in relatively 
open landscapes with low vegetation. Powerline 
removal methods can largely remove abnormal 
Z values, especially for LiDAR metrics that capture 
vegetation height and vegetation cover in low and 
upper vegetation layers. Developing upscaling solu-
tions on high-performance computing or cloud envir-
onments together with additional training data will 
be crucial next steps for generating high-quality 
metrics of ecosystem structure at regional or national 
extents.
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Appendices

Appendix A

Table A1. Twenty-five LiDAR metrics representing vegetation height, vegetation cover, and vertical variability of vegetation. 
Additional information on the ecological meaning of the metrics can be found in Kissling et al. (2023).

Abbreviation LiDAR metrics Description

Vegetation height
Hmax Maximum vegetation height Maximum value of normalized Z within a grid cell
Hmean Mean vegetation height Mean value of normalized Z within a grid cell
Hmedian Median vegetation height Median value of normalized Z within a grid cell
Hp25 25th percentile of vegetation 

height
The 25th percentile of normalized Z values within a grid cell

Hp50 50th percentile of vegetation 
height

The 50th percentile of normalized Z values within a grid cell

Hp75 75th percentile of vegetation 
height

The 75th percentile of normalized Z values within a grid cell

Hp95 95th percentile of vegetation 
height

The 95th percentile of normalized Z values within a grid cell

Vegetation cover
PPR Pulse penetration ratio Ratio of the number of ground points to the total number of points within a grid cell
BR_below_5 Density of vegetation below 5  

m
Ratio of the number of vegetation points below 5 m to the total number of vegetation points within a grid 

cell
BR_below_1 Density of vegetation below 1  

m
Ratio of the number of vegetation points below 1 m to the total number of vegetation points within a grid 

cell
BR_1_2 Density of vegetation within 

1‒2 m
Ratio of the number of vegetation points within 1‒2 m to the total number of vegetation points within 

a grid cell
BR_2_3 Density of vegetation within 

2‒3 m
Ratio of the number of vegetation points within 2‒3 m to the total number of vegetation points within 

a grid cell
BR_3_4 Density of vegetation within 

3‒4 m
Ratio of the number of vegetation points within 3‒4 m to the total number of vegetation points within 

a grid cell
BR_4_5 Density of vegetation within 

4‒5 m
Ratio of the number of vegetation points within 4‒5 m to the total number of vegetation points within 

a grid cell
BR_5_20 Density of vegetation within 

5‒20 m
Ratio of the number of vegetation points within 5‒20 m to the total number of vegetation points within 

a grid cell
Dens_ab_m_z Density of vegetation above 

mean height
Ratio of the number of vegetation points above mean height to the total number of vegetation points 

within a grid cell
BR_above_3 Density of vegetation above 3  

m
Ratio of the number of vegetation points above 3 m to the total number of vegetation points within a grid 

cell
BR_above_20 Density of vegetation above 

20 m
Ratio of the number of vegetation points above 20 m to the total number of vegetation points within 

a grid cell

Vertical variability of vegetation
Coeff_var_z Coefficient of variation (CV) CV of normalized Z values within a grid cell
Hskew Skewness of vertical 

vegetation distribution
Skewness of normalized Z values within a grid cell

Entropy_z Shannon index (foliage height 
diversity)

The negative sum of the proportion of points within .5 m height layers multiplied with the logarithm of the 
proportion of points within .5 m height layers within a grid cell

Hkurt Kurtosis of vertical vegetation 
distribution

Kurtosis of normalized Z values within a grid cell

Sigma_z Roughness of vegetation Residual standard deviation of a locally fitted plane within a cylinder
Hstd Standard deviation (SD) of 

vegetation height
SD of normalized Z values within a grid cell

Hvar Variance of vertical vegetation 
distribution

Variance of normalized Z values within a grid cell
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Appendix B

Table B1. Performance of three the powerline extraction methods (deep learning, hybrid, eigenvalue decomposition) in each study 
area (A‒J). Four accuracy measures are provided, namely the recall (Re), precision (Pr), quality (Qu), and F1 score. The mean (Mean) and 
standard deviation (SD) are calculated across the ten study areas (A‒J).

Study area

Deep learning Hybrid Eigenvalue decomposition

Re Pr Qu F1 Re Pr Qu F1 Re Pr Qu F1

A 98.75 98.88 97.65 98.81 97.5 98.54 96.11 98.02 84.79 99.77 84.63 91.67
B 94.57 97.72 92.52 96.12 94.33 98.52 93.01 96.38 82.93 93.85 78.65 88.05
C 93.38 97.56 91.25 95.42 89.33 98.36 88.02 93.63 84.91 89.13 76.94 86.97
D 83.89 98.49 82.82 90.6 74.04 99.38 73.7 84.86 97.79 94.09 92.13 95.9
E 94.13 99.09 93.32 96.55 92.41 99.24 91.76 95.7 89.61 99.25 89.01 94.19
F 95.45 99.49 94.98 97.42 94.15 99.64 93.83 96.82 75.41 77.03 61.57 76.21
G 95.41 98.78 94.29 97.06 92.77 98.54 91.51 95.57 96.11 69.98 68.05 80.99
H 99.36 99.01 98.39 99.19 96.53 99.23 95.82 97.87 78.17 98.37 59.53 74.63
I 97.59 97.54 95.24 97.56 94.6 98.29 93.06 96.4 86.07 63.05 57.21 72.78
J 92.67 99.54 92.28 95.98 91.96 99.6 91.62 95.63 90.01 48.94 46.42 63.41
Mean 94.52 98.61 93.27 96.47 91.76 98.93 90.84 95.10 86.58 83.35 71.41 82.48
SD 4.13 0.72 4.10 2.26 6.30 0.50 6.12 3.61 6.73 16.80 14.40 10.07

Figure B1. Violin plot of the proportion of removed powerline points across 10 study areas using three powerline extraction methods 
(deep learning, hybrid, and eigenvalue method). The proportion of remaining powerline points from each tested method was 
calculated relative to the total amount of manually labeled powerline points (ground truth).

Table B2. Computational efficiency of three powerline extraction methods (deep learning, hybrid, and eigenvalue) in 10 study areas 
(A‒J). Summarized are the number of processed points, the executing times, and the time efficiency for each method*. The deep 
learning and eigenvalue methods have the same number of processed points because both of them consider the whole point clouds 
as input, while the hybrid method only uses the candidate points (i.e. subsets of the whole point clouds).

Study area
Data volume 

(MB)

Number of processed points Execution time (min) Time efficiency (points/sec)

Deep learning Hybrid Eigenvalue Deep learning Hybrid Eigenvalue Deep learning Hybrid Eigenvalue

A 88.2 3,303,321 678,731 3,303,321 8.4 2.0 0.5 6593 5628 112358
B 70.8 2,652,288 457,185 2,652,288 7.8 1.7 0.3 5660 4482 138140
C 92.8 3,475,929 589,571 3,475,929 10.1 2.0 0.4 5725 4963 152453
D 142 5,339,845 2,312,700 5,339,845 14.7 6.9 0.8 6062 5627 112655
E 132 4,948,259 2,072,722 4,948,259 14.1 6.2 0.7 5841 5617 124956
F 140 5,270,261 1,797,204 5,270,261 15.3 5.5 0.7 5737 5496 129173
G 124 4,664,596 4,101,100 4,664,596 13.7 12.1 0.6 5695 5640 127448
H 154 5,797,241 5,033,447 5,797,241 16.2 14.4 0.3 5950 5838 292790
I 121 4,531,694 2,806,415 4,531,694 12.7 8.2 0.7 5942 5704 107897
J 151 5,682,735 3,923,754 5,682,735 16.4 11.6 0.7 5793 5652 135303
Total 1215.8 45,666,169 23,772,829 45,666,169 129.3 70.4 5.7 5885 5628 134470
Mean 121.6 4566616.9 2377282.9 4566616.9 12.9 7.0 0.6 5899.9 5464.7 143317.4
SD 28.5 1078053.5 1591772.9 1078053.5 3.1 4.5 0.2 275.5 415.9 54220.6

*The experiment was performed on a DELL XPS laptop with 2.40 GHz Intel Core i9 processor and 32 GB RAM.
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Appendix C

Figure C1. Variation in the shapes of transmission towers as captured in different airborne laser scanning datasets. (a) Transmission 
towers in Canada (DALES dataset) which were used for training the deep learning model. (b) Transmission towers in the Netherlands 
(AHN3 dataset) which were used for prediction.
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