
RESEARCH ARTICLE

Accurate detection and identification of

insects from camera trap images with deep

learning

Kim BjergeID
1*, Jamie Alison2, Mads Dyrmann1, Carsten Eie Frigaard1, Hjalte M. R. Mann2,

Toke Thomas Høye2

1 Department of Electrical and Computer Engineering, Aarhus University, Aarhus N, Denmark,

2 Department of Ecoscience and Arctic Research Centre, Aarhus University, Aarhus C, Denmark

* kbe@ece.au.dk

Abstract

Reported insect declines have dramatically increased the global demand for standardized

insect monitoring data. Image-based monitoring can generate such data cost-efficiently and

non-invasively. However, extracting ecological data from images is more challenging for

insects than for vertebrates because of their small size and great diversity. Deep learning

facilitates fast and accurate insect detection and identification, but the lack of training data

for coveted deep learning models is a major obstacle for their application. We present a

large annotated image dataset of functionally important insect taxa. The primary dataset

consists of 29,960 annotated insects representing nine taxa including bees, hoverflies, but-

terflies and beetles across more than two million images recorded with ten time-lapse cam-

eras mounted over flowers during the summer of 2019. The insect image dataset was

extracted using an iterative approach: First, a preliminary detection model identified candi-

date insects. Second, candidate insects were manually screened by users of an online citi-

zen science platform. Finally, all annotations were quality checked by experts. We used the

dataset to train and compare the performance of selected You Only Look Once (YOLO)

deep learning algorithms. We show that these models detect and classify small insects in

complex scenes with unprecedented accuracy. The best performing YOLOv5 model consis-

tently identifies nine dominant insect species that play important roles in pollination and pest

control across Europe. The model reached an average precision of 92.7% and recall of

93.8% in detection and classification across species. Importantly, when presented with

uncommon or unclear insects not seen during training, our model detects 80% of individuals

and usually interprets them as closely related species. This is a useful property to (1) detect

rare insects for which training data are absent, and (2) generate new training data to cor-

rectly identify those insects in future. Our camera system, dataset and deep learning frame-

work show promising results in non-destructive monitoring of insects. Furthermore, resulting

data are useful to quantify phenology, abundance, and foraging behaviour of flower-visiting

insects. Above all, this dataset represents a critical first benchmark for future development

and evaluation of deep learning models for insect detection and identification.
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Author summary

It is crucial to understand trends in insect species, both for agriculture and wildlife conser-

vation. Computer vision and deep learning (DL) are revolutionizing the field of entomol-

ogy, but most applications are developed for images captured in lab conditions, against

solid backgrounds or by manual photography. Until now, DL models have not permitted

the detection of multiple insect species against complex vegetated backgrounds. This

paper provides a dataset and models to fill this niche and to demonstrate their application.

We achieved a high precision above 90% for detection and classification across nine dif-

ferent insect species. Open-source models are trained on our open access image dataset,

which contains over two million images with 29,960 annotated bees, hoverflies, butterflies,

and beetles against varied floral backdrops. Our study solves the more difficult challenge

of detecting multiple small insects in large images. We expand and upgrade data and mod-

els, making them publicly available and demonstrate a cutting-edge solution for auto-

mated in situ monitoring of insects, showing good performance in the detection of

unfamiliar insect species. Above all, we hope these resources will enable a new generation

of non-destructive studies of the co-occurrence, phenology and behaviour of insects.

1. Introduction

Multiple lines of evidence suggest widespread declines in the abundance, diversity, and bio-

mass of insects [1]. Standardised insect monitoring is needed to unravel the magnitude of

these trends across taxa, regions, and time periods [2]. In particular, automated sensor systems

(e.g. insect camera traps) and data extraction algorithms (e.g. computer vision and deep learn-

ing) are valuable tools to understand trends in insects and their underlying drivers [3–6].

However, the potential of deep learning to process such sensor signals (e.g. detecting insects in

images) for insect monitoring hinges upon (1) choice and positioning of sensors; (2) accuracy,

speed and usability of deep learning models and (3) quantity, quality and accessibility of train-

ing data.

Convolutional neural networks (CNNs) are increasingly applied in ecological research [7]

to solve object detection and classification tasks [8]. Studies have demonstrated considerable

advances in use of CNNs for insect identification and monitoring; modern cameras offer suffi-

cient resolution to identify many insect species, while CNNs can automate species classifica-

tion with very high accuracy [9]. However, many barriers remain, and the availability of

standardised training data is a major bottleneck to wider use and application [4]. Indeed, most

rigorous tests of CNNs in entomology have been based on dead insects [10], where curated

collections of specimens of known identity are most readily available [11], or non-standardised

images from citizen science databases [12].

A particularly exciting prospect enabled by deep learning is automated, non-invasive moni-

toring of insects and other small organisms in their natural environment [13]. However, this

brings specific challenges that reach beyond the classification tasks addressed in previous stud-

ies [11,12]. Most importantly, small insects must be detected and localised within complex and

dynamic scenes of natural vegetation. While detection and classification of insects in situ can

be achieved, the above factors can lead models to falsely identify background elements as

objects of interest [14]. Furthermore, insects often exhibit high intra-class variation (e.g. a but-

terfly species with wings open vs. closed) and several individuals from multiple, similar species

groups may appear simultaneously within an image [15]. Models trained on museum
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specimens or opportunistic image libraries are not equipped to localise and identify small

insects in natural vegetation. Training images must include relevant insect taxa, but also rele-

vant backgrounds against which to detect them; otherwise, models will generate large numbers

of false positive and false negative detections, resulting in low model precision.

Another challenge in automated insect monitoring is the inevitable appearance of species

or classes of insects for which adequate training data do not exist. The immense diversity of

insects, as well as the unevenness of ecological communities, mean that it is not feasible to

obtain training data to perfectly classify all species. Thus, as is the case with DNA reference

libraries, scientists will need to work with incomplete and imbalanced image reference libraries

for the foreseeable future. In practice, models will need to be retrained when images of poorly

represented species or classes become available. In the meantime, most CNNs can either (1)

fail to detect the unfamiliar insect (i.e. classify it as background) or (2) detect the unfamiliar

insect and falsely attribute it to a similar, trained class. Both of these outcomes are imperfect,

resulting from practical limitations in both training data and model specification. However,

detecting unfamiliar insects and interpreting them as close relatives is advantageous if model

predictions are regularly screened; in this way novel classes can be identified, labelled, and

incorporated into future training datasets. Furthermore, many important ecological questions

are not sensitive to minor misidentifications, concerning e.g. function, activity, abundance or

biomass of broad taxonomic groups. Clearly, the way that insect detection and classification

models handles novel and potentially nested classes requires further investigation [16].

Flower visiting insects are typically highly mobile and their visits to flowers are mostly

short. Thus, image-based monitoring of flower-visiting insects require a high frame rate.

Image processing with a deep learning model can either be applied in real-time (i.e. in parallel

with image capture) or images can be stored and processed after the image recording. In both

cases, computational speed is critical, and the open source deep learning network, You Only

Look Once (YOLO), known to be particularly fast, has gained strong support [17]. YOLO [17]

is a unified object detection architecture for deep neural networks where YOLOv5 is written in

Python and use PyTorch as the machine learning framework. YOLOv5 can process images

and detect objects with a frame rate ranging from 30 to 100 frames per second depending on

the model size, measured by the number of trainable parameters, the size of the image, and the

available graphical processing unit (GPU).

Here, we present the data and research infrastructure for automated image-based insect

monitoring and make it freely available. Specifically, we provide a remarkable training dataset

and validated deep learning models to demonstrate accurate, automated detection and classifi-

cation of insects in complex ecological scenes. We developed and used a custom-built time-

lapse camera system to capture images of plants and insects. From the images, we created the

datasets for training insect detection models (YOLO) which could be deployed for on-board

processing and thus real-time presentation of insect monitoring data. We demonstrate the

optimal configuration to detect and classify nine dominant insect taxa, and show abundance

of those taxa through an entire summer comprising more than two million images. Further-

more, we evaluate how models perform when presented with insects not confirmed to fall

within those nine species, simulating the scenario where unclear specimens or rare species are

encountered during monitoring. Finally, we demonstrate how the trained model can be used

to monitor the seasonal abundance of insect species.

2. Results

During the period June to September 2019, ten cameras (Fig 1) were in operation on a green

roof with a mix of 13 species of Sedum plants [18]. The Sedum plant species flower at different
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times during the growing season, so there was a continuous availability of flowers during the

recording period from 24. June to 30. September. Data from the first six weeks were unfortu-

nately lost from two cameras due to rainwater entering the hard drive in one system and

destroying it. In total 2,347,944 images from the 10 cameras were collected during the study,

occupying 591 GB of data. Examples of collected images are shown in Fig 2.

An overview of the initial and final training and validation datasets, as well as the additional

test dataset, are shown in Table 1. Example images of individual insect species for each class

are shown in Fig 3. There is uncertainty with respect to the species identity in some of the

Fig 1. Five insect monitoring systems with ten cameras mounted on a roof with Sedum plants. The systems collect time-lapse images with an interval

of 30 seconds during the daytime. The white central box on each frame contains a Raspberry Pi computer with an external hard disk connected to two

Logitech web cameras. The system is powered through the power grid.

https://doi.org/10.1371/journal.pstr.0000051.g001

Fig 2. Images of Sedum plants with one bumblebee (left) and honey bee (right) highlighted by red rectangles. The image size is 1920x1080 pixels

and covers a field of view of approximately 35 x 22 cm.

https://doi.org/10.1371/journal.pstr.0000051.g002
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annotations due to poor image quality, particularly Eupeodes corolla and Eristalis tenax. Differ-

ent classes are not evenly represented in the data, with the smallest sample sizes for species

such as Aglais urticae and Eristalis tenax. Background images comprise a selection of images

from the ten cameras representing the growing season of Sedum plants, with different

Table 1. Number of insect classes in the dataset used for training, validation and test. Insects were annotated from the images with Sedum plants. The background

class contains images without any insects. A train and validation dataset with six species (6cls) was used to train the first YOLO model. A benchmark training and valida-

tion dataset with an approximate split percentages of 85/15 with nine species (9cls) was used to train the final evaluated YOLO models. The test component of the bench-

mark dataset contains additional unfamiliar classes 10–19 that contain other species of bees, flies and beetles, unclear insects and other animals. Classes 1–9 are listed in

brackets next to their closest relative of the unfamiliar classes 10–19.

Initial dataset Benchmark dataset

No. Class (related species ID no.) Train 6cls Validate 6cls Train 9cls Validate 9cls Test 19cls

1 Coccinella septempunctata 368 97 6344 299 396

2 Apis mellifera 1585 266 6934 1663 2162

3 Bombus lapidarius 301 50 1551 250 269

4 Bombus terrestris 430 84 2955 240 268

5 Eupeodes corolla 1115 80 3410 275 573

6 Episyrphus balteatus 699 169 1306 274 415

7 Eristalis tenax 286 28 31

8 Aglais urticae 286 27 31

9 Vespula vulgaris 956 201 217

10 Bombus spp. (3,4) 667

11 Syrphidae (5,6,7) 1982

12 Coccinellidae (1) 27

13 Non-Bombus Anthophila (2) 271

14 Rhopalocera (8) 51

15 Non-Anthophila Hymenoptera (9) 285

16 Non-Syrphidae Diptera 421

17 Non-Coccinelidae Coleoptera 19

18 Unclear insect 489

19 Other animal 231

Total 4498 746 25028 4932 8805

Background 1147 346 1153 341 341

https://doi.org/10.1371/journal.pstr.0000051.t001

Fig 3. Examples of the common insect species that were observed and labelled for training and validation of the

YOLO models. The numbers refer to the species listed in Table 1.

https://doi.org/10.1371/journal.pstr.0000051.g003
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flowering colours, but without insects. Table 1 shows an overview of the occurrence of all spe-

cies in the annotated dataset for training, validation and testing of the CNN algorithm.

We trained a total of 10 different YOLO models as listed in Table 2 based on the datasets

listed in Table 1. No. 1 is the initial YOLOv3 model trained on the small dataset with six clas-

ses, which we used to create the benchmark dataset with nine classes. No. 2 and 3 are two dif-

ferent YOLOv5 models trained on the initial (6 classes) dataset with varying input image and

model size. No. 4 is a YOLOv3 model trained on the large dataset with nine classes to assess

the performance gain of adding data for training YOLOv3 models. Model No. 4 also allowed

us to compare a YOLOv3 model with different YOLOv5 models all trained and validated on

the benchmark dataset. The different YOLOv5 models varied in image and model size (model

No. 5 to No. 10).

In Fig 4 the class, object and box losses are shown for training YOLOv5 models with nine

classes. For an image size of 640 (640v5m), the validation class loss starts to increase in the area

of 275 epochs. For an image size of 1280, object loss starts to increase in the area of 350 epochs.

This indicates the start of overfitting and it is before or in this area that the best models should

be found when comparing with Fig 5. In Fig 5 the mAP@.5:.95 and F1-scores are shown as a

function of epochs for validating the trained models and red marks indicates the best models

found.

The best YOLO models found are listed in Table 2 including one YOLOv3 model (No. 4).

There was a remarkable improvement with the use of any of the configured YOLOv5 models

compared to YOLOv3 model trained on the benchmark dataset. The large dataset, in particu-

lar, provided greatly improved performance of YOLOv5 models with an increased F1-score of

0.2 compared to training on the small dataset. This was not the case for YOLOv3. The

increased image and model size from 640 (640v5m) to 1280 (1280v5s6) pixels provides only a

slight improvement with an increased F1-score of 0.01 with nine classes. The difference

between the 1280v5s6 and 1280v5m6 models was also minimal with an increased F1-score

lesser than 0.01. The method of using the F1-score for the fitness function gave only a slightly

better result seen on the F1-score. The absolute best YOLOv5 model was no. 10 with an

F1-score of 0.932.

The best-trained YOLOv5 model is shown in Table 3 with metrics for each of the nine clas-

ses of species. The most common class in the images was the honeybee (Apis mellifera), which

had a very high precision of 95%. The most difficult species to detect and classify were Eristalis
tenax and Episyrphus balteatus; 5% of E. balteatus were detected as background false negatives.

Table 2. Precision, recall, and Mean Average Precision (mAP@.5:.95) on the validation dataset for different trained YOLO models. Models trained on the small

(6cls) or large (9cls) dataset. The training method indicates which metric is used to evaluate when to stop the training process: mAP@.5:.95 (mAP), F1-score (F1) or stop-

ping after a high number of epochs (epoch).

No. YOLOv3/5 model Dataset Image size Method Epoch Precision Recall F1-score mAP @.5:.95

1 608v3 6cls 608 epoch 340 0.678 0.595 0.634 -

2 640v5m 6cls 640 mAP 88 0.718 0.727 0.722 0.294

3 1280v5s6 6cls 1280 mAP 97 0.700 0.785 0.740 0.276

4 608v3 9cls 608 epoch 340 0.687 0.654 0.670 -

5 640v5m 9cls 640 mAP 231 0.914 0.909 0.911 0.580

6 640v5m 9cls 640 F1 262 0.917 0.907 0.912 0.574

7 1280v5s6 9cls 1280 mAP 244 0.915 0.929 0.922 0.585

8 1280v5s6 9cls 1280 F1 268 0.916 0.934 0.925 0.581

9 1280v5m6 9cls 1280 mAP 335 0.921 0.939 0.923 0.592

10 1280v5m6 9cls 1280 F1 396 0.927 0.938 0.932 0.591

https://doi.org/10.1371/journal.pstr.0000051.t002
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For Eristalis tenax the amount of training (286) and validation (28) data was limited, and this

species is easily mistaken for, and widely considered to be a Batesian mimic of, Apis mellifera
[19]. This is reflected in the model confusion matrix in Fig 6; 18% of Eristalis tenax was pre-

dicted as Apis mellifera. A high recall and precision was achieved for Aglais urticae, even with

few training data. The confusion matrix indicates a good model in detection and classification

Fig 4. Training and validation with class, object and box loss for YOLOv5 models with nine classes. The loss is

show as function of training epochs for three different YOLOv5 models: YOLOv5m (640v5m, blue), YOLOv5s6

(1280v5s6, green) and YOLOv5m6 (1280v5m6, red).

https://doi.org/10.1371/journal.pstr.0000051.g004

Fig 5. The mAP@.5:.95 and F1-scores are shown as a function of epochs for validating the trained models:

YOLOv5m (640v5m, No. 5+6), YOLOv5s6 (1280v5s6, No. 7+8) and YOLv5m6 (1280v5m6, No. 9+10). The red

marks indicate the best models based on the fitness function using the F1-score or the standard YOLOv5 fitness using

mAP values. Training of 1280v5s6 (green curves) and 640v5m (blue curves) made an early stopping after 343 and 332

epochs since there was no increase of the fitness within the last 100 epochs.

https://doi.org/10.1371/journal.pstr.0000051.g005
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of species with a diagonal of high scores ranging from 0.82 to 1.00. However, there are a num-

ber of false positive (FP) detections in the background image, especially for Apis mellifera
(0.44) and hoverflies (0.36).

To evaluate whether the best model will detect unfamiliar insects and interpret them as

closely related species, predictions were made for the additional test dataset using the trained

Table 3. Precision, recall, F1-score and mAP on the validation dataset of the best-trained YOLO model (No. 10) for each species in the dataset.

No. Species Precision Recall F1-score mAP mAP

@.5 @.5:.95

1 Coccinella septempunctata 0.950 0.949 0.949 0.966 0.651

2 Apis mellifera 0.944 0.951 0.947 0.965 0.610

3 Bombus lapidarius 0.975 0.949 0.962 0.987 0.660

4 Bombus terrestris 0.959 0.975 0.967 0.982 0.648

5 Eupeodes corolla 0.882 0.949 0.914 0.938 0.504

6 Episyrphus balteatus 0.919 0.883 0.901 0.902 0.473

7 Eristalis tenax 0.799 0.854 0.826 0.853 0.605

8 Aglais urticae 0.963 1.000 0.981 0.966 0.675

9 Vespula vulgaris 0.949 0.935 0.942 0.938 0.502

Average 0.927 0.938 0.932 0.944 0.592

https://doi.org/10.1371/journal.pstr.0000051.t003

Fig 6. Normalized confusion matrix of predictions of the best YOLOv5 model (No. 10) for trained classes within

the validation dataset. The y-axis (True) is the ground truth class of annotated insects. The number of observations of

each class is shown in brackets. The x-axis (Predicted) is the class predicted by the trained model. The values in cells

indicates the proportion of each true class that was attributed a given predicted class. For example, 82% of Eristalis
tenax were predicted correctly, with 18% falsely classified as Apis mellifera. 44% of 211 false positive detections in the

background image were predicted as Apis mellifera.

https://doi.org/10.1371/journal.pstr.0000051.g006
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YOLOv5 model (Table 2, No. 10). Of 4,212 unfamiliar insects, 3,509 (80%) were detected, of

which most were classified as closely related taxa (Fig 7). In particular, unfamiliar classes

which were represented in the training dataset by multiple species in the same genus or family

(e.g. Bombus spp., Syrphidae) were detected and classified in a sensible way (Fig 7). Most Bom-
bus spp. were detected and classified as either Bombus lapidarius or Bombus terrestris (i.e.

Bombus spp., 91%, Fig 7), while Syrphidae were quite consistently detected classified as

Eupeodes corolla, Episyrphus balteatus or Eristalis tenax (80%). Indeed, the vast majority of

non-Bombus Anthophila were appropriately detected and classified as Apis mellifera (92%).

However, not all unfamiliar insects were so readily detected; Diptera were not detected in 48%

of cases (Fig 7). A total number of 684 or 7.8% false detections of plant parts (false positives) in

Fig 7. Normalised confusion matrix of predictions of unfamiliar insects present in the test dataset, based on the

best YOLOv5 model. The y-axis (True) is the broad taxonomic class of unfamiliar insects. These unfamiliar classes

only contain insects not assigned to any of the nine trained classes. The x-axis (Predicted) is the class predicted by the

trained model, but aggregated trained classes were formed for Bombus spp. and Syrphidae for direct comparison with

their unfamiliar equivalents. Detection and high-level classification accuracy was high for unfamiliar classes

represented by at least one similar taxon during model training (above the solid black line).

https://doi.org/10.1371/journal.pstr.0000051.g007
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images were mostly classified as honeybees and hoverflies, and are not shown in the matrix. A

number of 997 or 11.3% missed detections (false negatives) gives an indication of how many

insects will be missed in images recorded by the system.

All the collected images in the period from June to September from 10 cameras with a time-

lapse of interval of 30 seconds between each image were finally analysed. Arranged in a U-

form, the cameras cover an area of approximately one square meter in total, as shown in Fig 1.

Fig 8 shows the insect species detections per day found by the trained YOLOv5 model

(1280v5m6) in the more than two million images recorded during the period of experiment.

There is a clear seasonal dynamic in the occurrence of the various insects, while the occurrence

of honeybees and hoverflies are more than 10 times higher than all other groups. It seems that

hoverflies and ladybirds dominate the first half of the season (June-August), while the honey-

bees are most active in late August. The occurrence of Eristalis tenax was high in September,

which deviates from other hoverflies (Eupeodes corolla and Episyrphus balteatus) most active

in July. The variation in visitation rates are likely impacted by the weather and the longer-term

seasonal effects such as different species of blooming Sedum plants.

3. Discussion

Insect detection in close range time-lapse photography is challenging as the objects of interest

are small and varied and may resemble elements of the background [20,21]. Earlier work has

demonstrated that the amount of training data is critical to solving this challenge [22]. With

our study, we provide the tools and benchmark data to advance the implementation of robust

automated monitoring of insects in situ. Our system is widely applicable as a means to capture

Fig 8. Seasonality and variation in the number of individual detections for each of the nine insect taxa counted in

images collected from 10 cameras every day. The number in brackets shows the total count of the given species in the

experimental period. Hoverflies: Tribe Syrphini holds the combined detections of Eupeodes corolla and Episyrphus
balteatus. Eristalis tenax is separated in its own graph since it differs in abundance occurrence of the period.

https://doi.org/10.1371/journal.pstr.0000051.g008
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images of plants and insects and to automatically generate monitoring data of insect species

abundance [4,23–25]. Our method could also contribute to insect pest monitoring with cam-

era-equipped traps in agriculture and forestry without killing rare insect species [26,27].

Remarkably, our automated insect monitoring camera system can collect images with suffi-

cient resolution to efficiently and accurately analyse individual insects with YOLOv5. We have

created and published a dataset with the most common insects in Europe for future training of

deep learning models for automated insect detection and identification.

The best trained YOLOv5 model (1280v5m6 validation with highest F1-score) measured an

average precision of 92.7% in classifying the species correctly with an average recall of 93.8%.

We know of no study with such high classification performance for insects recorded with

time-lapse cameras, where image quality of the insects typically is lower than in portals such as

iNaturalist. Comparable classification rates (91.5%) have been achieved in a similar study of

insect classification and detection in field crops using machine learning techniques [28]. How-

ever, that study did not tackle the challenge of detecting insects in larger images, and the image

data sets [29] were not derived from time-lapse images. As image-based monitoring methods

evolve, it will be important to evaluate how performance of classification models trained on

different image data compare.

Image classification performance may vary among taxa. Our classification precision was

poorest for hoverflies due to many false positives where parts of the background were detected

as insects. Many of the false positives were structures in Sedum flowers, which appeared similar

to the small hoverflies. Episyrphus balteatus is small compared to the other commonly detected

insects in our data and could easily be missed. We also found that insects were misclassified. In

particular, drone flies were sometimes misclassified as honeybees The appearance of the butter-

fly Aglais urticae is very distinct and different from the other insect classes in our data and this

class had a high recall and precision even with little training data. Still, a high performance of

the CNN supports our approach of incorporating computer vision and deep learning into the

image recording process for insect monitoring. The improved and trained YOLOv5 model

could easily replace the YOLOv3 model used in the real-time insect tracking and monitoring

system presented by Bjerge, Mann, & Høye, 2021. We have measured that the YOLOv5s6 model

takes less than 0.5 sec. to execute on the Jetson Nano computer, which means the frame rate

would increase from 0.33 fps (YOLOv3) to 2 fps. The newly released YOLOv7 [30] would be an

alternative YOLO model to use, however initial results with YOLOv7-E6 does not improve per-

formance on our benchmark dataset compared to YOLOv5 models presented in this paper.

Importantly, our YOLOv5 model, trained on nine insect species, is able to detect insects

belonging to species that were not seen during training. Specifically, when presented with

images containing unfamiliar or unclear insects, the model detected 80% of individuals. Thus,

we raise an exciting prospect: The use of rich training data on a few common species to facili-

tate detection of rare or poorly documented insects. However, unfamiliar insects were most

readily detected if many similar species featured in the training data (e.g. Bombus spp. and Syr-

phidae); thus, the model’s ability to detect novel taxa might improve if more species were fea-

tured in training. Fortunately, our model also represents a tool to efficiently generate training

data for rarer insect species; misattributions of unfamiliar insects to familiar species can be

manually screened. This would enable generation of ever-larger image reference libraries,

spanning ever-more uncommon taxa. When algorithms and computer power develop suffi-

ciently, we propose that future models employ a hierarchical classification process [31,32].

This would incorporate the prospect of novel and nested taxa from the outset and generate

predictions at the most appropriate taxonomic level.

Our camera system is composed of off-the-shelf hardware and supports sufficient storage

space to work off-line in monitoring insects over the entire growing season. The system is a
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low-cost solution integrated with software based exclusively on open source code. The solution

operated with only one interruption over extended periods, even during rain, strong winds,

and at high temperatures. During our experiment, we ran the deep learning algorithm after

image recording was completed, but it could be moved to on-site processing on a Raspberry Pi

4B, Jetson Nano or similar. By running the entire algorithm on the camera system, it would

also be possible to present summary data in real-time to the end-user of a specific unit or to

combine summary data from multiple units at a regional or even global scale to a wider com-

munity. Once the system is launched, it requires little to no maintenance, and communication

via the internet provides an opportunity to monitor the status of each system. The total cost of

the hardware with Logitech C922 web cameras, Raspberry Pi 3B and an SDD hard drive is

approximately $350 with grid power. Solar panel, battery and charger add an additional cost of

$425 for locations without power. The cheaper plant-insect interaction camera trap (PICT) is

based on a Raspberry Pi Zero with only one camera and storing data on a micro SD card [33].

The PICT system could be modified with Logitech C922 cameras to lower the price. As such,

we argue that our solution is tested, stable, reasonably priced and thus ready for large-scale

deployment for insect monitoring across larger regions.

The proposed trained YOLOv5 solves an important challenge for insect monitoring by

applying CNN-enabled object detection after the recording process. However, the models are

trained on a time-lapse images from 10 cameras with very similar backgrounds, thus model

performance will almost certainly be lower on images with other plants and flowers in different

contexts. We present an important benchmark dataset to train models for insect detection and

classification tasks. However, to achieve better generalisation performance, this dataset must

be combined with other, new datasets from a wide variety of environmental contexts. In the

future, generalisation performance might be rigorously tested by holding out specific cameras

or contexts during model training. Furthermore, we have presented a single-pass detection

and classification process using YOLO. Alternatively, a two-pass approach could be proposed

starting with a general insect detector followed by a higher performance classifier to identify

insect species. This two-phase approach might generalize better to other contexts if the insect

detector was trained with a higher variation of background images. It might also cope better

with unbalance in class frequencies, especially during detection.

If a model is applied after data collection, with the same camera system as presented in this

paper, the model will likely be able to detect the nine different insect species. Some of the unfa-

miliar species will be detected, but they would be classified as one of the nine species in the data-

set. A strategy to handle new species would be to extend the dataset with more classes of species

and retrain the YOLOv5 model. In a novel environment, background images needs to be added

to the dataset and the model retrained for it to learn and distinguish insects from plants in the

new background. There are only minor difference in the precision and recall for the best trained

YOLOv5 models, so for on-board processing either the YOLOv5m, YOLOv5s6 or YOLOv5m6

models should be considered since speed is important for real-time detection. The proposed

computer vision system and deep learning with YOLOv5 is promising as an automated system

for insect observations and complements existing systems for monitoring nocturnal insects [34].

4. Materials and methods

4.1. Collection of images

Images were collected using five recording units each consisting of a Raspberry Pi 3B com-

puter connected to two Logitech C922 HD Pro USB web cameras [35] with a resolution of

1920x1080 pixels. Images from the two cameras were stored in JPG format on an external 4TB

USB hard disk (Fig 1). The Raspberry Pi 3B with two cameras and a hard drive consumes only
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4W during full operation powered by 5V. We supplied power to the system through the grid

connection (230-240V AC) connected to a 5V/2.5A transformer, but due to the low power

consumption, each unit could be powered by a 12V 55Ah lead battery, DC-DC converter and

a 60Wp solar panel for deployment at locations without power. A time-lapse program [36]

installed on the Raspberry Pi was used to continuously capture time-lapse images with a fra-

merate of 30 seconds between images. This program could also be configured to trigger when-

ever movement is detected in the camera field of view. However, it is not guaranteed that

insect movements are sufficient, while movement of plants could trigger image capture despite

no insects within the frame. The camera used automatic exposure to handle variation in light

conditions related to direct sun, clouds, and shadows. Focus was manually adjusted for optimal

image sharpness. With continuous time-lapse recording of 30 seconds, we recorded a maxi-

mum of 2040 images per camera per day between 5 AM and 10 PM in the timespan when

there was sufficient light to capture images.

During the period June to September 2019, the camera systems were in operation on a

green roof in Aarhus, Denmark (GPS Latitude 56.153471, Longitude 10.212053) with a mix of

13 species of Sedum plants [18]. Four cameras were adjusted to a working distance of 24 cm

covering an area of 35 × 22 cm and six cameras with a working distance of 32 cm covering an

area of 46 × 27 cm. An insect (0.5–2 cm) occupies between 45×45 to 120×120 pixels and the

captured images were stored in JPG format with a resolution of 1920×1080 pixels.

4.2. Benchmark insect image datasets

To efficiently generate a large benchmark dataset for detection and classification of insects, we

used a three-stage approach. In the first stage, insects were annotated within a subset of images

to train a preliminary deep learning model. In the second stage, predictions from the prelimi-

nary model provided many more candidate insect detections, which were verified and used to

generate improved deep-learning models. In the third stage, to evaluate model responses to

unfamiliar classes, uncommon or unclear insects were annotated to a coarse taxonomic level.

In the first stage images were selected opportunistically from the ten cameras, capturing

variation in insects, flowering Sedum plants from different cameras, and the full growing sea-

son. In the images with insects, we made bounding box annotations, using a labelling image

tool [37], of what appeared to be the six most abundant insect taxa (Apis mellifera, Bombus ter-
restris, Bombus lapidarius, Episyrphus balteatus, Eupeodes corolla, and Coccinella septempunc-
tata). More than 1,000 background images without any insects were also selected within fixed

time and date intervals from all 10 cameras. The resulting images across all cameras were ran-

domly assigned to either training or validation datasets to train a preliminary YOLOv3 model

as described in [18]. This preliminary model located a large number (127,171 detections or

candidate insects) of additional insects in the more than two million recorded images.

In the second stage, the preliminary model was used to make predictions across all images

recorded by the 10 different cameras during the whole recording period. These predictions

generated a large number of images with candidate insects, which were verified for the final

benchmark dataset as follows. First, candidate insects were manually screened by users of our

online citizen science project PollinatorWatch on the Zooniverse platform (https://www.

zooniverse.org/). Subsequently, candidate insects were quality checked by the authors and

bounding boxes were adjusted especially for butterflies. Finally, the working taxonomy was

updated to account for new classes with high representation in the data, for a total of nine clas-

ses (see Table 1). During quality checks, non-detected insects were found in the same images

as detected and verified insects; these were annotated and included in the benchmark dataset.

Finally, images with annotations were separated in a stratified-random way into three groups
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(training, validation, and test data). Images were separated to provide even representation over

time of day and season across all 10 cameras. For the benchmark dataset a split of approxi-

mately 85/15 was chosen to prioritize more data for training, but still having sufficient data

samples to validate the models. The validation dataset contained at least 200 annotations of

each species except for Aglais urticae and Eristalis tenax, for which 10% of the annotations

were used for validation.

Finally, uncommon or unclear insects were annotated. Throughout verification, many

insects had unclear identity or fell outside of the nine training classes. These organisms were

not considered useful for training, but they represent an important part of the reality of auto-

mated in situ insect monitoring. To understand how a trained model might behave when pre-

sented with novel or unclear insects, we produced an extended test dataset including nine

additional classes of uncommon or unclear insects, as well as other animals (e.g. slugs;

Table 1). The additional insect classes comprised unknown bumblebee species (Bombus spp.),

hoverflies (Syrphidae), ladybirds (Coccinelidae), non-Bombus bees (Anthophila), butterflies

(Rhopalocera), non-bee Hymenoptera (mostly sawflies: Symphyta), non-Syrphid flies (Dip-

tera), non-ladybird beetles (Coleoptera) and unclear or blurry insects (usually in motion or

out of focus). We refer to these as unfamiliar classes, as they were completely excluded from

the foreground and background of both the training and validation sets.

4.3. Insect detection and classification with YOLO

To find insects of interest, different versions of the deep learning algorithm YOLO [17] were

trained and evaluated. YOLO is a one-stage object detector, which predicts bounding boxes

around objects (insects) within the image, their class labels (species) and confidence scores.

One-stage object detectors are faster than two-stage detectors such as Faster R-CNN [38] with

the cost of lower accuracy. However, fast execution is important when millions of images need

to be processed, or the object detector is deployed on an embedded computer in-situ e.g. [14].

The collected images were processed by YOLO on a workstation computer in our experiment.

In this paper, YOLOv3 and YOLOv5 architectures were evaluated. YOLOv3 was used to

produce the preliminary model, as it was accessible when we started the study in 2019. Later

YOLOv4 and recently YOLOv5 were published, with many new features, and we evaluate this

evolution of models in detecting and classifying insect species. YOLOv3 was used with the

CNN backbone darknet53 with a total of 53 layers, which has achieved a high mAP on the

benchmark COCO dataset of 57.9% [39]. This accuracy was comparable to other state-of-the-

art deep learning networks like RetinaNet [8] and ResNet50-based R-CNN [40]. Darknet53

uses three residual skip connections that make detections at three different scales. Newer

YOLO versions [41] use the modified backbone CSPDarknet53 and introduces new features

such as “Bag of specials” and “Bag of freebies” where the data augmentation for training is

improved without affecting the inference cost. “Bag of freebies” covers a number of new aug-

mentations such as CutMix and Mosaic. Mosaic mixes four different training images as

opposed to CutMix using two images to enhance the data augmentation. In order to tackle

class imbalance in our dataset, a focal loss function is used [42]. The focal loss function consists

of a dynamical scale cross-entropy loss where the scaling factor is adjusted based on the confi-

dence. This means that the scaling will decrease towards zero as the confidence increases. As

such, the easily recognisable insects have less impact on the training. The activation function

in YOLOv4 and YOLOv5 is changed to the novel self-regularizing non-monotonic activation

function (Mish) [43]. YOLOv5 [44] is developed in parallel with YOLOv4 and contains the

same features implemented natively in Python and PyTorch. YOLOv5 is easier to train as it

introduces auto-anchor. Before auto-anchor, the anchor boxes would need to be trained as a
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step before training. YOLOv5 provides capability of models with different neural network

architectures and image sizes. The smaller models allow faster execution. To improve perfor-

mance and speed up training, the YOLOv5 is pre-trained on the COCO [39] dataset. We used

the pre-trained models and compared the capability of YOLOv5m, YOLOv5s6 and

YOLOv5m6 to detect and classify insect species. The models were chosen because their size

allows them to be run with the required memory, and achieving a high accuracy on most rea-

sonably priced GPUs. An official paper for YOLOv5 has not been released, but YOLOv5 has

been successfully used to study the abundance of three pest insect species on sticky traps [45].

In the training of YOLOv5, three different loss functions were calculated. The first concerns

errors between the predicted boundary of the bounding box and ground truth (box loss). The

second is confidence in whether an object is detected in the box (object loss). The third, classi-

fication loss, concerns if an object is correctly classified (class loss) and is the sum of squared

error of the class conditional probabilities for each class.

To evaluate the potential trade-off between model performance and processing speed with

variable image sizes we explored different combinations of image size (640×384 and 1280×768

pixels), small (YOLOv5s6 with 12.6M parameters) and medium (YOLOv5m with 21.2M

parameters, YOLOv5m6 with 35.7M parameters) model size, and two different fitness func-

tions to find the optimal YOLOv5 model to classify the insect species in our data. The accuracy

of the YOLOv5 models evaluated in this paper are ranging from 45 to 51 in mean Average Pre-

cision (mAP) on the COCO dataset [44]. The default fitness function in YOLOv5 defines a

weighted combination of metrics, where mAP@.5 contributes 10% of the weight and

mAP@.5:.95 contributes with the remaining 90%. mAP@.5 is the mAP calculated as the mean

area under the precision-recall curve for all classes with an IoU of 0.5. mAP@.5:.95 is defined

by the COCO challenge [39] as the average mAP across all the IoU threshold between 0.5 and

0.95 with a step of 0.05. Here, we have compared this default method with using the maximum

F1-score as the fitness function. The F1-score is calculated based on the recall and precision as:

F1 ¼
2 � recall � precision
recallþ precisionð Þ

The F1-score prioritizes the importance of detecting and classifying the insect species cor-

rectly over fitting the correct bounding box size. Since insects are very small in the images

there is a high uncertainty of the annotated bounding box.

To demonstrate the value of automated cameras and to understand insect phenology, we

present the number of occurrences per day of different insect species throughout the period of

the experiment. To better understand the role of YOLO model generation and image size for

model performance, we also trained a YOLOv3 model using default settings trained with an

image resolution of 832×468 pixels and validated on images with 608×342 pixels. This

approach gave better results than training on images with 608×342 pixels [18]. The number of

training iterations for the YOLOv3 model was chosen based on when the average training loss

was no longer decreasing. The selected YOLO3 model used 30,000 iterations (equal to 340

epochs with a batch size of 64), which gave a higher precision and recall on the validation data-

set than using less than 28,000 iterations. A higher number of training iterations would

increase the risk of overfitting the model.
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7. Christin S, Hervet É, Lecomte N. Applications for deep learning in ecology. Methods in Ecology and

Evolution. 2019; 10. https://doi.org/10.1111/2041-210X.13256

8. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and

their applications. Neurocomputing. 2017; 234. https://doi.org/10.1016/j.neucom.2016.12.038
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