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A B S T R A C T   

Quantifying ecosystem structure is of key importance for ecology, conservation, restoration, and biodiversity 
monitoring because the diversity, geographic distribution and abundance of animals, plants and other organisms 
is tightly linked to the physical structure of vegetation and associated microclimates. Light Detection And 
Ranging (LiDAR) — an active remote sensing technique — can provide detailed and high resolution information 
on ecosystem structure because the laser pulse emitted from the sensor and its subsequent return signal from the 
vegetation (leaves, branches, stems) delivers three-dimensional point clouds from which metrics of vegetation 
structure (e.g. ecosystem height, cover, and structural complexity) can be derived. However, processing 3D 
LiDAR point clouds into geospatial data products of ecosystem structure remains challenging across broad spatial 
extents due to the large volume of national or regional point cloud datasets (typically multiple terabytes con
sisting of hundreds of billions of points). Here, we present a high-throughput workflow called ‘Laserfarm’ 
enabling the efficient, scalable and distributed processing of multi-terabyte LiDAR point clouds from national and 
regional airborne laser scanning (ALS) surveys into geospatial data products of ecosystem structure. Laserfarm is 
a free and open-source, end-to-end workflow which contains modular pipelines for the re-tiling, normalization, 
feature extraction and rasterization of point cloud information from ALS and other LiDAR surveys. The workflow 
is designed with horizontal scalability and can be deployed with distributed computing on different in
frastructures, e.g. a cluster of virtual machines. We demonstrate the Laserfarm workflow by processing a country- 
wide multi-terabyte ALS dataset of the Netherlands (covering ~34,000 km2 with ~700 billion points and ~ 16 
TB uncompressed LiDAR point clouds) into 25 raster layers at 10 m resolution capturing ecosystem height, cover 
and structural complexity at a national extent. The Laserfarm workflow, implemented in Python and available as 
Jupyter Notebooks, is applicable to other LiDAR datasets and enables users to execute automated pipelines for 
generating consistent and reproducible geospatial data products of ecosystems structure from massive amounts 
of LiDAR point clouds on distributed computing infrastructures, including cloud computing environments. We 
provide information on workflow performance (including total CPU times, total wall-time estimates and average 
CPU times for single files and LiDAR metrics) and discuss how the Laserfarm workflow can be scaled to other 
LiDAR datasets and computing environments, including remote cloud infrastructures. The Laserfarm workflow 
allows a broad user community to process massive amounts of LiDAR point clouds for mapping vegetation 
structure, e.g. for applications in ecology, biodiversity monitoring and ecosystem restoration.   
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1. Introduction 

Many organisms — especially animals such as birds, mammals, and 
insects — depend on the structural aspects of vegetation for nesting, 
shelter, food provisioning and foraging, and their diversity, distribution 
and abundance is therefore tightly linked to the horizontal and vertical 
heterogeneity of their habitats (Davies and Asner, 2014; MacArthur and 
MacArthur, 1961; Roth, 1976; Tews et al., 2004). Vegetation structure 
and heterogeneity also influences microclimates which has important 
implications for understanding climate-change impacts on biodiversity 
and ecosystems (Zellweger et al., 2019). Recent human-induced modi
fications of ecosystem structure have led to biodiversity declines, e.g. 
through habitat fragmentation, loss of keystone habitat structures, or 
through the reduction of habitat heterogeneity at the landscape scale 
(Benton et al., 2003; Fahrig et al., 2011; Haddad et al., 2015; Tews et al., 
2004). Moreover, atmospheric nitrogen deposition, the abandonment of 
agricultural practices in nutrient-poor habitats, or the restoration of 
ecosystems through rewilding are causing changes in the structure of 
ecosystems (Bakker and Svenning, 2018; Fagúndez, 2012; Provoost 
et al., 2011). Hence, quantifying ecosystem structure in a standardized 
way at high spatial resolution over broad spatial extents is of key 
importance for ecology and conservation, e.g. in the context of 
ecosystem restoration and the monitoring and modelling of biodiversity 
(Koma et al., 2021a; Pereira et al., 2013; Valbuena et al., 2020). How
ever, obtaining field measurements of ecosystem structure across large 
areas is time consuming and typically restricted to small study plots. 
Applications of remote sensing techniques are therefore promising 
because they allow to measure and monitor ecosystem structure in a 
spatially contiguous way and across broad spatial extents (Pettorelli 
et al., 2016; Skidmore et al., 2015; Valbuena et al., 2020; Vihervaara 
et al., 2017). 

Active remote sensing techniques such as Light Detection And 
Ranging (LiDAR) provide a direct and accurate way to obtain detailed 
information on vertical and horizontal vegetation structure (Alexander 
et al., 2014; Bakx et al., 2019; Coops et al., 2016; Dubayah et al., 2020; 
Valbuena et al., 2020). For instance, LiDAR sensors installed on air
planes and helicopters are used in airborne laser scanning (ALS) surveys 
to capture information on canopy height, vegetation cover, vertical 
complexity or other 3D aspects of animal habitats (Davies and Asner, 
2014; Valbuena et al., 2020; Vierling et al., 2008). Broad-scale ALS data, 
for instance over national or regional extents, are becoming available 
from an increasing number of countries across the world, e.g. Canada 
(Matasci et al., 2018), the US (https://usgs.entwine.io/), Australia 
(https://elevation.fsdf.org.au/), many parts of Europe (Table 1), and 
some areas in Asia and Africa (Stereńczak et al., 2020). ALS measure
ments use the time difference between a laser pulse emitted from an 
airborne LiDAR sensor and the return signal from objects on the ground 
(e.g. from leaves, branches and stems of vegetation, from buildings or 
infrastructure, or from the ground surface) to provide x,y,z coordinates 
and additional information (e.g. intensity, number of returns, and GPS 
time stamp) of these objects. To derive ecologically meaningful infor
mation, the massive 3D point clouds (typically consisting of hundreds of 
billions of points in a national or regional ALS survey) need to be further 
processed, e.g. into LiDAR metrics which statistically aggregate the 3D 
point cloud information within spatial units such as voxels or raster cells 
(Bakx et al., 2019; Davies and Asner, 2014; Meijer et al., 2020). This 
allows not only to map the terrain (through using LiDAR returns from 
ground), but also to quantify different aspects of vegetation structure 
(using LiDAR returns from vegetation). We follow the terminology of 
Valbuena et al. (2020) in the context of developing a standardized set of 
Essential Biodiversity Variables (EBVs) from LiDAR that could facilitate 
and enable large-scale biodiversity monitoring, especially in terms of 
variables related to ecosystem height (e.g. maximum vegetation height 
within a given cell), ecosystem cover (e.g. vegetation density within 
height layers), and ecosystem structural complexity (e.g. the vertical 
distribution and variability of vegetation within a grid cell). 

Given the large data volumes (e.g. multiple terabytes of raw data), 
the processing of massive ALS point clouds is computationally 
demanding and often a major challenge for ecologists (Meijer et al., 
2020; Roussel et al., 2020). For instance, extracting LiDAR metrics (e.g. 
ecosystem height, cover and structural complexity) from ALS point 
clouds with high resolution over national or regional extents requires 
performing calculations over hundreds of billions of points, posing 
challenges in terms of required central processing unit (CPU) time, 
memory capacity, data storage and data access. Moreover, the large data 
volumes require the re-tiling of the raw data into chunks with appro
priate size, to optimize memory allocation during processing, and to 
take advantage of multi-core or multi-machine architectures, e.g. mak
ing feature extraction amenable to distributed computing and parallel 

Table 1 
Examples of European open-access LiDAR point clouds derived from airborne 
laser scanning (ALS) surveys over a (sub)national extent. Such raw datasets 
(point clouds) enable the quantification of ecosystem structure at high spatial (e. 
g. 1–10 m) resolution by processing the multi-terabyte ALS dataset into raster 
layers, capturing height, cover or structural complexity of vegetation.  

Country Region Point 
density 

Data 
volume* 

Download 

Finland 
Northern 
Europe 

1–2 
pt./m2 4 TB 

https://tiedostopalvelu.maa 
nmittauslaitos.fi/tp/kartta?la 
ng=en 

Sweden Northern 
Europe 

0.25–1 
pt./m2 5 TB 

https://geotorget.lantmater 
iet.se/bestallning/produkt 
er/skogliglas 

Norway 
Northern 
Europe 

0.2–10 
pt./m2 6 TB 

https://hoydedata.no/Las 
erInnsyn/ 

Denmark Northern 
Europe 

0.2–25 
pt./m2 10 TB https://datafordeler.dk/ 

Estonia Northern 
Europe 

0.2–18 
pt./m2 30 TB 

https://geoportaal.maaamet. 
ee/eng/Spatial-Data/Elevat 
ion-data-p308.html 

UK- England Western 
Europe 

0.5–16 
pt./m2 45 TB 

https://environment.data.go 
v.uk/dataset/094d4ec8-4c 
21-4aa6-817f-b7e45843c5e0 

UK- 
Scotland 

Western 
Europe 

1–16 
pt./m2 8 TB https://remotesensingdata. 

gov.scot/data#/map 

Netherlands Western 
Europe 

0.2–20 
pt./m2 16 TB 

https://www.ahn.nl/ahn-vie 
wer?origin=/common-nlm/ 
viewer.html 

Belgium Western 
Europe 

16–20 
pt./m2 25 TB 

https://remotesensing. 
vlaanderen. 
be/apps/openlidar/#c 
ollapseDataDownload 

Germany 
(partly) 

Western 
Europe 

4–10 
pt./m2 10 TB 

https://www.geoportal-th. 
de/de-de/Downloadbereiche/ 
Download-Offene-Geodaten- 
Th%C3%BCringen/Down 
load-H%C3%B6hendaten 

Switzerland 
Central 
Europe 

5–20 
pt./m2 25 TB 

https://www.swisstopo.ad 
min.ch/en/geodata/height/ 
surface3d.html 

Luxembourg 
Central 
Europe 

15–20 
pt./m2 2 TB 

https://data.public.lu/fr/ 
datasets/lidar-2019-releve- 
3d-du-territoire-luxembo 
urgeois/ 

Spain 
Southern 
Europe 

0.5–2 
pt./m2 5 TB 

http://centrodedescargas.cn 
ig.es/CentroDescargas/catalo 
go.do?Serie=LIDAR 

Slovenia 
Eastern 
Europe 

2–5 
pt./m2 2.5 TB 

http://gis.arso.gov.si/evode 
/profile.aspx?id=atlas_vod 
a_Lidar@Arso 

Latvia Eastern 
Europe 

1.5–4 
pt./m2 10 TB 

https://www.lgia.gov. 
lv/en/Digit%C4%81lais% 
20virsmas%20modelis 

Slovakia 
Eastern 
Europe 

5–10 
pt./m2 8 TB 

https://zbgis.skgeodesy. 
sk/mkzbgis/en/teren/toc? 
pos=48.800000,19.530000,8  

* Data volume represents how much data storage is needed. It is estimated 
based on the number of files available in each download portal and the average 
size of each file. 
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processing. Several software tools already exist for ALS data processing, 
but some of them — such as OPALS (Pfeifer et al., 2014) and LAStools 
(http://lastools.org/) — are not open source or contain source code and 
functionalities that are not publicly available (see brief review in 
Roussel et al. (2020)). Open source tools such as LidR (Roussel et al., 
2020), FUSION (http://forsys.sefs.uw.edu/fusion/fusionlatest.html), 
CloudCompare (https://www.danielgm.net/cc/), and the Point Data 
Abstraction Library (PDAL, https://pdal.io/) exist, but typically do not 
provide reproducible end-to-end workflows for massive parallel scaling 
that can be deployed on different high performance computing plat
forms. A key bottleneck is the availability of free and open-source 
software (FOSS) tools that allow a high-throughput processing of 
multi-terabyte LiDAR point clouds in an efficient, scalable and distrib
uted way. In fact, many existing software packages and tools are not 
capable of handling large amounts of input data, limiting their use in 
upscaling the LiDAR point cloud processing to broad spatial extents, e.g. 
for analysing fine-scale habitat requirements of threatened species (de 
Vries et al., 2021; Koma et al., 2021a) or EU-wide habitat condition 
monitoring (Pereira et al., 2022). Moreover, while some researchers 
with a sufficient degree of computer literacy can overcome challenges of 
big data management and processing of LiDAR point clouds, they typi
cally use aggregations of custom-made scripts which have limited 
reproducibility. Workflows that facilitate a detailed automatic docu
mentation linking input data to outputs while including processing 
parameter choices is vital for ensuring that results are reproducible. 
Hence, the development of modular, reproducible and scalable high- 
throughput FOSS workflows will increase reproducibility and enable 
users to handle large data volumes in a consistent and computationally 
efficient way. 

Here, we present ‘Laserfarm’, a reproducible high-throughput FOSS 
workflow for the standardized and scalable processing of massive 
amounts of LiDAR point clouds from national and regional ALS surveys 
into raster layers of ecosystem structure (Fig. 1). The Laserfarm work
flow supports interoperability and reusability (Wilkinson et al., 2016) 
and is designed for (1) free and open use (i.e. no restrictive license, free 
of charge, and with inspectable and modifiable code), (2) horizontal 
scalability (i.e. to execute multiple processes in parallel and to distribute 
the workload over multiple nodes), (3) deployment on different 
computing infrastructures (from single machines with multiple nodes, to 
clusters of virtual machines, supercomputing clusters, and cloud 
computing), and (4) reproducibility (i.e. automatic documentation 

detailing the inputs and parameters used in generating its output). We 
illustrate the implementation and performance of the Laserfarm work
flow with a country-wide LiDAR dataset from the third Dutch national 
ALS flight campaign (AHN3), covering ~34,000 km2 with a point den
sity of ~10–20 points/m2. The ~700 billion points and ~16 TB un
compressed data volume are processed into 25 raster layers that 
quantify various dimensions of ecosystem structure, including aspects of 
ecosystem height, ecosystem cover, and ecosystem structural 
complexity. Laserfarm is programmed in Python which is widely 
adopted in the scientific community and comes with a detailed docu
mentation, tutorials and example implementations available as Jupyter 
Notebooks. 

2. Materials and methods 

2.1. Design principles of Laserfarm 

Laserfarm (https://pypi.org/project/laserfarm/) is a reproducible, 
modular end-to-end workflow for efficiently extracting LiDAR metrics of 
ecosystems structure on distributed computing infrastructures. The four 
modular scriptable pipelines (Fig. 2) allow the standardized and 
computationally efficient re-tiling, normalization, feature extraction 
and rasterization of massive LiDAR point clouds into high-resolution 
geospatial data products of ecosystem structure. A number of design 
principles were central for developing the Laserfarm workflow: 

First, Laserfarm is fully free and open to use. This has been achieved 
by basing the workflow only on existing FOSS tools such as the user- 
extendable, cross-platform Python tool ‘Laserchicken’ (Meijer et al., 
2020), the Point Data Abstraction Library (PDAL), the Geospatial Data 
Abstraction Library (GDAL), and numerous packages hosted on the open 
source Python Package Index (PyPI). Moreover, Laserfarm itself is also 
available as FOSS, i.e. free of charge, released under a permissive license 
(Apache 2.0), and with source code being fully open and shared on a 
platform (GitHub) that promotes community engagement. Finally, 
Laserfarm supports standard point cloud and geo-data formats (LAS/ 
LAZ, PLY, GeoTIFF, etc.) which makes it compatible with a wide range of 
other (FOSS) tools for geoscience. 

Second, Laserfarm is designed for horizontal scalability. This is 
implemented by combining the FOSS tool Laserchicken, which provides 
the flexible and customizable processing of point cloud data via vec
torized single process operations (Meijer et al., 2020), with the mature 

Fig. 1. The Laserfarm workflow enables the efficient, scalable and distributed processing of multi-terabyte Light Detection And Ranging (LiDAR) point clouds from 
national and regional airborne laser scanning (ALS) surveys into raster layers of ecosystem structure. The Laserfarm workflow is exemplified with a country-wide 
LiDAR point cloud dataset from the Netherlands (AHN3). Examples of specific LiDAR metrics capturing ecosystem height, ecosystem cover, and ecosystem struc
tural complexity are provided in Table 2. 
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scaling abilities of the Dask library (Rocklin, 2015), which offers user 
friendly task/process distribution across a range of computing plat
forms. To avoid that input data must pass thorough a single distribution 
node, Laserfarm has further adopted a fully distributed approach for 
which only metadata describing the tasks and inputs (and the outputs) 
are handled by the central scheduling node. The actual processing is 

then fully independently distributed, allowing massive multiple read 
and write operations to data storage, and ensuring that input/output (I/ 
O) scaling is not a bottleneck for the processing. As such, Laserfarm 
supports the highest throughput possible from storage systems to pro
cessing nodes, and is designed to process very large amounts of data 
efficiently, i.e. high-throughput and with high performance. 

Third, Laserfarm can be seamlessly deployed on computing archi
tectures ranging from desktop systems to distributed clusters, i.e. single 
machines with multiple nodes, clusters of virtual machines (VMs), 
supercomputing clusters, and cloud computing environments. The Dask 
library (Rocklin, 2015) provides adapters for different computing in
frastructures and thus supports the same user-facing application pro
gramming interface (API). Laserfarm further implements data access 
support for both file system as well as remote storage via WebDAV (Web- 
based Distributed Authoring and Versioning) protocols, thus ensuring 
broad employability on different computing infrastructures. 

Fourth, Laserfarm supports reproducibility. It automatically docu
ments input details and choices of processing parameters. Each step of 
the Laserfarm workflow adds metadata entries to the dataset, detailing 
the inputs and parameters used in generating its output. Each output 
thus includes metadata documenting each step of its production. 

2.2. Workflow architecture and Laserfarm modules 

Laserfarm includes four modules (Fig. 2). The first module in the 
Laserfarm workflow is the re-tiling (‘1. Re-tiling’ in Fig. 2). The large 
volume of modern ALS data (e.g. country-wide LiDAR datasets with high 
point densities) together with efficient compression algorithms have 
resulted in data providers delivering their LiDAR raw data with file sizes 
that are often too large for general system memories on processing 
platforms. Hence, the original files available from LiDAR repositories 
need to be first re-tiled into smaller chunks for further efficient, scalable 
and distributed processing. After downloading the LiDAR point clouds 
from a repository (see examples in Table 1) to a data storage, the 
Laserfarm workflow splits the raw data (typically available as LAZ files) 
into smaller LAZ files with a user defined tile size (Fig. 2). Splitting the 
original LAZ files into multiple smaller LAZ files is based on the “split” 
functionality from the PDAL (PDAL Contributors, 2020) which allows to 
create smaller data objects for further processing. This takes advantage 
of the low-level (C++) implementation of the PDAL, and supports 
typical point cloud data formats such as LAS/LAZ and PLY. If the sizes of 
input files exceed the limit of available memory allocation, the files can 
be first split into smaller tile sizes before applying the re-tiling step of the 
Laserfarm workflow. This can be done with the laspy library from PyPi 
(https://laspy.readthedocs.io/en/latest/installation.html) rather than 
the “split” functionality from the PDAL as the latter requires a much 
larger memory to load the whole (original) file. Overall, the re-tiling step 
allows the computing infrastructure to subsequently handle the data as 
efficiently as possible given its available CPUs and random-access 
memory (RAM). 

The second module of the Laserfarm workflow is the normalization 
(‘2. Normalization’ in Fig. 2). This module builds on the ‘Normalize’ 
module of the ‘Laserchicken’ software (Meijer et al., 2020) and nor
malizes the point cloud heights relative to the terrain surface. LiDAR raw 
data from ALS typically come with height values (z-values) that repre
sent the absolute height rather than the height relative to the ground. 
The normalization therefore subtracts the ground surface and removes 
the influence of terrain on the height of aboveground points. Using the 
retiled data, Laserfarm calculates the normalized height for each indi
vidual point as the height relative to the lowest point within a grid cell 
size defined by the user (Fig. 2). 

The third module of the Laserfarm workflow is the feature extraction 
(‘3. Feature extraction’ in Fig. 2). This module builds on the ‘Features’ 
and ‘Compute Neighbors’ modules of the ‘Laserchicken’ software 
(Meijer et al., 2020). >50 feature calculations are currently available in 
the ‘Laserchicken’ software (https://laserchicken.readthedocs.io/en/ 

Fig. 2. Architecture of the Laserfarm workflow showing the four core modules. 
After downloading the LiDAR point clouds from a repository to a data storage, 
Laserfarm provides a standardized and reproducible framework for re-tiling, 
normalization, feature extraction and rasterization of multi-terabyte LiDAR 
point clouds into raster layers of ecosystem structure. For the normalization and 
feature extraction, the workflow is wrapping the ‘Laserchicken’ point cloud 
processing library whereas the retiling and rasterization requires the PDAL and 
GDAL library, respectively. Post-processing steps can include applying masks 
for water surfaces and human infrastructures (e.g. derived from cadastre or 
landcover information) to minimize errors related to ground detection and 
building heights. A detailed documentation of the workflow is available on the 
Laserfarm website (https://laserfarm.readthedocs.io/en/latest/) and a Jupyter 
notebook is available on GitHub (https://github.com/eEcoLiDAR/tutorial_ecol 
idar/tree/main/notebooks). All code is also hosted and freely available from 
GitHub (https://github.com/eEcoLiDAR/Laserfarm). 
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latest/) of which twenty-five are particularly suited to capture aspects of 
ecosystem height, ecosystem cover and ecosystem structural complexity 
(for details see Table 2 and Section 2.5. Data). These LiDAR metrics can 
be classified into three ecosystem dimensions (height, cover and struc
tural complexity) following a standardized framework of ecosystem 
morphological traits derived from LiDAR (Valbuena et al., 2020). This 
enables the monitoring of globally consistent variables of ecosystem 
structure at national or regional scales. 

The fourth module of the Laserfarm workflow rasterizes the extrac
ted features (‘4. Rasterization’ in Fig. 2). The rasterization includes 
merging and exporting the extracted features as raster layers by serial
izing them into data formats (e.g. GeoTIFF) that are compatible with 
Geographic Information System (GIS) or other software familiar to 
ecologists (e.g. R), based on functionality from the GDAL. 

2.3. Implementation of workflow 

The re-tiling module of the Laserfarm workflow needs to be config
ured using the functions retiling_input{} and set_grid{} (Fig. 3a). This 
allows users to define the specific schema for the re-tiling, i.e. the spatial 
extent and the number of tiles. A log file is generated for each re-tiled file 
which contains information of the processing steps for validation. This is 
done with the function validate{} (Fig. 3a) and allows users to check 
whether the generated (smaller) LAZ files contain the same number of 
points as the (larger) parent file, i.e. comparing the point count value of 
the original LAZ file (available in the LAZ header file) with the sum of 
point count values from all split files. 

The normalization module of Laserfarm is implemented with the 
function normalization_input{} (Fig. 3b). The cell size for the normali
zation can be defined by the user, e.g. 1 m × 1 m (‘normalize’: 1, Fig. 3b) 
calculates the normalized z-value for all points by subtracting the height 
(z-value) of the lowest point within a 1 m × 1 m grid cell from each 
individual point in the cell. 

The feature extraction module calculates the LiDAR metrics of 
ecosystem structure using the parameters specified in feature_ex
traction_input{} (Fig. 3c). The calculation of features requires to define 
vegetation and ground points (function apply_filter{}; Fig. 3c) and a 
spatial resolution (function generate_targets{} with specification of 
‘tile_mesh_size’; Fig. 3c), and a specific volume geometry of the point 
cloud (Meijer et al., 2020). Since the main focus of the Laserfarm 
workflow is to generate raster layers of ecosystem structure, each LiDAR 
metric is extracted using the point cloud around the centroids of (square) 
grid cells with an infinite vertical extent as the volume (Meijer et al., 
2020). Note that other resolutions (for infinite square cells) or other 
volume geometries (infinite cylinders, cubes and spheres) can be spec
ified because of the flexibility of the Laserchicken software to define 
various subsets of point cloud data (Meijer et al., 2020). 

Extracting features of ecosystem structure requires to define which of 
the points belong to vegetation. This can be done using the pre- 
classification of point clouds as provided in the raw ALS datasets, typi
cally captured using the point class standard of the American Society for 
Photogrammetry & Remote Sensing (ASPRS, 2019). The function 
apply_filter{} in the Laserfarm workflow (Fig. 3c) allows to define the 
vegetation points where the ‘value’ specifies the classification code of 
the ASPRS pre-classification. In our implementation, vegetation points 
were defined using the ASPRS classification code 1 (‘Unclassified’) 
(Fig. 3c). The feature extraction module then defines the spatial reso
lution (grid cell size) of the feature extraction using the function gen
erate_targets{} and ‘tile_mesh_size’ (see example code in Fig. 3c). The 
actual LiDAR metrics are calculated by specifying the feature names in 
the function extract_features{} (see example ‘perc_95_normali
zed_height’ in Fig. 3c). To export the extracted metrics (‘export_targets’, 
Fig. 3c), PLY files are generated for each LiDAR metric and stored in 
separate folders (using ‘multi_band_files’: False). 

The rasterization module finally exports the extracted LiDAR metrics 
as PLY files (‘export_targets’, Fig. 3c) and then stores them as single- 

band GeoTIFF files in separate folders (using ‘multi_band_files’: False, 
Fig. 3c). 

2.4. IT infrastructure specifications 

To illustrate the processing with the Laserfarm workflow, we used 
the IT services of SURF, the Dutch national facility for information and 
communication technology (https://www.surf.nl/en/ict-facilities). 
SURF provides access to a national IT infrastructure for the Dutch aca
demic community, including the HPC Cloud (https://userinfo.surfsara. 
nl/systems/hpc-cloud) on which the computations were performed. 
The HPC Cloud from SURF is composed of a cluster of virtual machines 
(VMs) with fast CPUs and high memory nodes. We set up a cluster of 11 
VMs, each VM with 2 cores, 32 GB or 64 GB RAM, and 256 GB local 
HDD. 

Besides the HPC Cloud, we used the GRID storage infrastructure from 
SURF (http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_sto 
rage.html) as a data storage to which the raw LiDAR point clouds 
were downloaded from the repository of the data provider (Fig. 2). The 
GRID storage infrastructure was also used for managing the large 
amount of data (e.g. retrieving, writing and deleting files). 

2.5. Data 

To demonstrate the processing of LiDAR point clouds with the 
Laserfarm workflow, we used the ALS data from the third Dutch national 
flight campaign (AHN3, Actueel Hoogtebestand Nederland). AHN3 is a 
country-wide, open-access ALS dataset with ~700 billion points and a 
point density of ~10–20 points/m2. It captures multiple returns with 
centimetre accuracy and has been acquired between 2014 and 2019 
during the leaf-off season (between December and March). The total raw 
data volume is ~16 TB. The raw point cloud has been pre-processed by 
‘Rijkswaterstraat’ (the executive agency of the Dutch Ministry of Infra
structure and Water Management) and comes with a classification code 
covering six classes (0: Never Classified, 1: Unclassified, 2: Ground, 6: 
Building, 9: Water, 26: Reserved [bridges etc.]), following the ASPRS 
point class standard (ASPRS, 2019). Besides the classification informa
tion, each point contains x,y,z coordinates and some additional char
acteristics (e.g. return number, intensity value, scan angle rank and GPS 
time). Other flight-related parameters such as pulse repetition rate, 
flight height and actual flight lines are not provided. The raw AHN3 data 
can be downloaded and viewed either via the Dutch geodataset platform 
called ‘Publieke Dienstverlening Op de Kaart (PDOK)’(https://www. 
pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3-) 
or via the viewer of the ‘Actueel Hoogtebestand Nederland (AHN)’ 
(https://ahn.arcgisonline.nl/ahnviewer/). We used a custom-made 
script (https://github.com/eEcoLiDAR/downloadAHN) for automati
cally downloading the AHN3 point cloud files from the repository of the 
PDOK webservices (https://app.pdok.nl/ahn3-downloadpage/) to the 
GRID storage infrastructure. 

From the AHN3 point clouds, we derived 25 LiDAR metrics that 
quantify various dimensions of ecosystem structure (Table 2). These 
metrics closely align with those that are commonly used in ecological 
applications and biodiversity monitoring (Bakx et al., 2019; Coops et al., 
2016; Davies and Asner, 2014; Moeslund et al., 2019; Valbuena et al., 
2020). We choose a spatial resolution of 10 m raster cells as this is (1) 
fine enough to capture the structural variability of vegetation given the 
available point densities of the AHN3 dataset (Table 1), and (2) of suf
ficiently high resolution to allow various applications in ecology and 
biodiversity science from landscape to regional extents (Bakx et al., 
2019). The specific code and mathematical description of each feature is 
available from an accompanying data publication (Kissling et al., 2022). 

Several of the LiDAR metrics require to define height thresholds. For 
instance, the density of vegetation points in defined height layers re
quires to define vegetation strata by setting a lower z-value (x1) and an 
upper z-value (x2) (see Table 2). For our example implementation, we 
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Table 2 
Examples of Light Detection And Ranging (LiDAR) metrics capturing ecosystem structure and their implementation in the Laserfarm workflow (building on the user- 
extendable features from the ‘Laserchicken’ software: https://laserchicken.readthedocs.io/en/latest/#features). The LiDAR metrics are grouped into three key di
mensions of ecosystem structure (ecosystem height, ecosystem cover and ecosystem structural complexity). Each LiDAR metric and its ecological relevance is briefly 
described. All metrics are calculated with the normalized point cloud. More details on metric calculation are provided in Meijer et al. (2020), on GitHub (https://gith 
ub.com/eEcoLiDAR/laserchicken), and on the ‘Laserchicken’ documentation page (https://laserchicken.readthedocs.io/en/latest/). References provide examples of 
LiDAR metric use in ecological applications.  

Nr Abbreviation LiDAR metric Feature in Laserchicken Description Ecological relevance Example 
references 

Ecosystem height 
1 Hmax Maximum vegetation 

height 
max_norm_z Maximum of normalized z Height of canopy 

surface, tree tops 
Bakx et al. (2019); 
Hyyppä et al. 
(2008); Lefsky 
et al. (2002); 
Maltamo et al. 
(2014) 

2 Hmean Mean of vegetation 
height 

mean_norm_z Mean of normalized z Average height of 
vegetation, mean tree 
height 

Bae et al. (2014); 
Höfle et al. 
(2012); Maltamo 
et al. (2014) 

3 Hmedian Median of vegetation 
height 

median_norm_z Median of normalized z Vegetation height, 
vertical distribution 
of vegetation 

Bakx et al. (2019); 
Maltamo et al. 
(2014) 

4–7 Hp25, Hp50, Hp75, 
Hp95 

Percentiles of vegetation 
height (25th, 50th, 75th 
and 95th) 

perc_xx_normalized_height Four metrics, capturing 25th, 
50th, 75th and 95th 
percentiles of normalized z, 
respectively 

Vegetation height, 
vertical distribution 
of vegetation, density 
in vegetation layers 

Bae et al. (2014); 
Bakx et al. (2019); 
Coops et al. 
(2016); Maltamo 
et al. (2014)  

Ecosystem cover 
8 PPR Pulse penetration ratio pulse_penetration_ratio Ratio of number of ground 

points to total number of 
points within a cell 

Openness of 
vegetation, canopy 
fractional cover, laser 
penetration index 

Luo et al. (2015); 
Peduzzi et al. 
(2012); Yu et al. 
(2014) 

9 Density_above_mean_z Canopy cover density_absolute_mean_norm_z Number of returns above mean 
height within a cell 

Density of upper 
vegetation layer 

Bakx et al. (2019) 

10–18 BR_below_x2, BR_x1_x2, 
BR_above_x2 

Density of vegetation 
points within defined 
height layers (<1 m, 
1–2 m, 2–3 m, >3 m, 
3–4 m, 4–5 m, <5 m, 
5–20 m, >20 m) 

band_ratio_x1 <
normalized_height < x2 

Ratio of number of vegetation 
points in height layers to the 
total number of vegetation 
points. Height layers are 
defined in meter above ground 
(using x1 as the lower bound, 
and x2 as the upper bound) 

Density of vegetation 
layers (e.g. canopy 
layer, understory 
layer, sub-canopy 
layer) 

Bae et al. (2014); 
Bakx et al. (2019); 
(Koma et al., 
2021b)  

Ecosystem structural complexity 
19 Coeff_var_z Coefficient of variation 

of vegetation height 
coeff_var_norm_z Coefficient of variation of 

normalized z within a cell 
Vertical variability of 
vegetation 
distribution (ratio of 
standard deviation to 
the mean) 

(Koma et al., 
2021b) 

20 Entropy_z Shannon index entropy_norm_z The negative sum of the 
proportion of points within 
0.5 m height layers multiplied 
with the logarithm of the 
proportion of points within 
0.5 m height layers within a 
cell 

Vertical complexity 
and evenness of 
vegetation, foliage 
height diversity 

Bae et al. (2014); 
Bakx et al. (2019); 
(Koma et al., 
2021b) 

21 Hkurt Kurtosis of vegetation 
height 

kurto_norm_z Kurtosis of normalized z 
within a cell 

Vertical distribution 
(‘tailedness’) of 
vegetation 

Bakx et al. (2019); 
(Koma et al., 
2021b); Maltamo 
et al. (2014) 

22 Sigma_z Roughness of vegetation sigma_z Standard deviation of the 
residuals of a locally fitted 
plane within a cylinder 

Small-scale 
roughness and 
variability of 
vegetation 

Zlinszky et al. 
(2012) 

23 Hskew Skewness of vegetation 
height 

skew_norm_z Skewness of normalized z 
within a cell 

Vertical distribution 
(asymmetry) of 
vegetation 

Bae et al. (2014); 
Bakx et al. (2019); 
(Koma et al., 
2021b); Maltamo 
et al. (2014) 

24 Hstd Standard deviation of 
vegetation height 

std_norm_z Standard deviation of 
normalized z within a cell 

Vertical variability of 
vegetation 
distribution (amount 
of variation around 
mean height) 

Bae et al. (2014); 
Höfle et al. (2012) 

25 Hvar var_norm_z 

(continued on next page) 
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defined nine height layers (<1 m, 1–2 m, 2–3 m, >3 m, 3–4 m, 4–5 m, 
<5 m, 5–20 m, >20 m). All LiDAR metrics were calculated by using 
points in the class ‘Unclassified’ to represent vegetation points. While 
some non-vegetation points remain in this class, a validation with hand- 
labelled points showed that the misclassification rate is low and the 
accuracy of the derived LiDAR metrics is high (Kissling et al., 2022). For 
all LiDAR metrics (except the pulse penetration ratio), we excluded 
points from all other classes of the ASPRS pre-classification (2: Ground, 
6: Building, 9: Water, 26: Reserved). Only for the pulse penetration ratio 
(as a measure of vegetation openness), we additionally included ground 
points (class 2: Ground) together with vegetation points because this 
metric calculates the number of ground points relative to the total 
number of ground and vegetation points within a grid cell (Table 2). 

2.6. Statistical analysis 

To illustrate the storage space requirements for applying the Laser
farm workflow to a country-wide ALS dataset, we summarized the file 
volumes for the (1) raw data (AHN3 LiDAR point clouds available as LAZ 
files), (2) re-tiled data (split LAZ files), and (3) raster layers of LiDAR 
metrics (GeoTIFF files). We used a Jupyter Notebook to extract the 
relevant information from the log files which are automatically gener
ated by the Laserfarm workflow when running the four modules. The 
notebook with example code for extracting information from the log 
files is available from GitHub (https://github.com/eEcoLiDAR/AHN/ 
blob/main/AHN3/10_extract_time_and_size.ipynb). 

To illustrate the workflow performance, we calculated CPU times 
from the same log files. We quantified (1) the total CPU time of the 
Laserfarm workflow for generating the 25 raster layers from the AHN3 
data, (2) the average CPU time for processing a single file within each of 
the four Laserfarm modules (re-tiling, normalization, feature extraction, 
and rasterization), and (3) the CPU time per file for calculating each of 
the 25 LiDAR metrics within the feature extraction module. For the 
feature extraction module, we additionally separated the CPU time of 
the actual LiDAR metric calculation from the CPU time needed for the 
pre-computations in this module, which include getting the input file 
from the data storage, creating the target grid, computing neighbour
hoods etc. Since one of the LiDAR metrics (i.e. the pulse penetration 
ratio, PPR) requires ground points (in contrast to all other LiDAR metrics 
which only require vegetation points), we also calculated the CPU times 
separately for pre-computations of the PPR vs. pre-computations of 
other LiDAR metrics. 

In addition to the CPU times, we also provide wall-time estimates, 
illustrating how the parallelisation and distributed processing of the 
Laserfarm workflow allows efficient processing of LiDAR point clouds. 
Since we used a cluster of 11 VMs for parallel computing, we divided the 
total CPU times for each Laserfarm module by 11. For two of the 
Laserfarm modules (normalization and feature extraction), we further 
run two tiles in parallel (using both cores of a VM). Hence, the CPU times 
for those modules were additionally divided by 2 to derive the wall-time 
estimates. For the other two modules (re-tiling and rasterization), the 
two cores of the VMs could not be used in parallel because files sizes 
were too large to be loaded into the memory. 

Since LiDAR metrics may correlate with each other, we performed a 
Principal Component Analysis (PCA) to explore co-variation among all 
25 LiDAR metrics. We quantified the percentage of explained variance 

for each PCA axis and identified the main axes of variation in ecosystem 
structure across all metrics. For each of the first three PCA axes, we 
selected the most important LiDAR metric (with the highest contribu
tion) for illustrative purposes (i.e. country-wide mapping). We used the 
R package ‘factoextra’ and its function prcomp(), and scaled all 25 
LiDAR metrics by their standard deviations. We randomly sub-sampled 
10,000 (10 × 10 m) grid cells for the PCA analysis because the prcomp() 
function could not allocate a vector with all grid cells across all metrics. 

3. Results 

3.1. File volumes 

For retrieving the raw data (LiDAR point clouds), we downloaded all 
1367 LAZ files (each with a spatial coverage of 5 km × 6.25 km) from the 
PDOK webservices to the GRID storage infrastructure from SURF. Data 
volumes per LAZ file varied from 0.3 MB to 6 GB (Fig. 4a), with an 
average volume of <2 GB (Table 3). To define the re-tiling grid, we 
specified a square grid of 512 × 512 cells across the Netherlands with a 
grid cell resolution of 1 km, using the Dutch projected coordinate system 
(EPSG:28992 Amersfoort / RD New). Applying the retiling module 
resulted in 37,457 LAZ files with an average data volume of 0.15 GB per 
file (Fig. 4b, Table 3). After the normalization and feature extraction 
module had been applied, the rasterization module produced 25 
country-wide GeoTIFF files with a 10 m resolution and usually <1 GB 
(Fig. 4c, Table 3). 

3.2. Workflow performance 

The total CPU time of the Laserfarm workflow for generating the 25 
raster layers of ecosystem structure across the Netherlands at a 10 m 
resolution from AHN3 raw data was ~294 days (Table 4). This corre
sponded to a total wall-time of ~14 days given the use of 11 VMs (each 
with 2 cores). The feature extraction was the most time consuming 
Laserfarm module (Fig. 5a), followed by the normalization, re-tiling and 
rasterization (Table 4). Within the feature extraction module, the actual 
calculation of LiDAR metrics was less time consuming than the pre- 
computations in this module (Fig. 5a). Moreover, the pre- 
computations were much larger for the LiDAR metric ‘pulse penetra
tion ratio (PPR)’ than for other LiDAR metrics (Fig. 5a). This is a direct 
result of the necessity to use both vegetation and ground points for the 
PPR calculation, thus making neighbourhood calculations and reading/ 
writing of input and output files in the feature extraction module 
computationally expensive for the PPR. 

On average, the CPU time per file was fastest for the normalization 
(Table 4), followed by the feature extraction and the re-tiling (Fig. 5b). 
Since both the normalization and the feature extraction had to be 
applied to 37,457 LAZ files (rather than 1367 LAZ files for the re-tiling), 
they resulted in a higher total CPU time (Fig. 5a). Creating the country- 
wide GeoTIFF file for each LiDAR metric during the rasterization took on 
average almost 6 h per file (Table 4), but had to be applied only 25 times 
(i.e. one raster layer for each LiDAR metric), hence the lowest total CPU 
time (Fig. 5a). 

For the feature extraction, the calculation of most LiDAR metrics 
only took <2 s per file (Fig. 5c). The most time-consuming LiDAR metric 
calculation was the PPR (Fig. 5c) because it required both ground and 

Table 2 (continued ) 

Nr Abbreviation LiDAR metric Feature in Laserchicken Description Ecological relevance Example 
references 

Variance of vegetation 
height 

Variance of normalized z 
within a cell 

Vertical variability of 
vegetation 
distribution 
(dispersion around 
mean height) 

(Koma et al., 
2021b)  
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Fig. 3. Implementation with code examples from the Jupyter Notebook for each step of the Laserfarm workflow, illustrated with visualizations of the corresponding 
results using the Dutch AHN3 point cloud dataset. (a) Re-tiling defines a grid (here with 512 × 512 cells across the Netherlands using the Dutch projected coordinate 
system) that splits each original LAZ file into tiles of a certain size (here: 1 km × 1 km, yellow cells in LAZ file). The re-tiling pipeline also allows users to validate if 
the total number of points remains the same before and after re-tiling. (b) Normalization recalculates the height of each point relative to the ground surface (here 
relative to the lowest point within a 1 m × 1 m grid cell; ‘normalize’: 1). (c) Feature extraction first filters the point cloud based on a pre-classification code, then 
defines the spatial resolution of the final raster layers (here 10 m × 10 m), extracts LiDAR metrics based on specified feature name(s) and volume geometries, and 
then exports each calculated feature as a PLY file. (d) Rasterization merges all PLY files of each LiDAR metric and subsequently exports GeoTIFF raster layers (here 
one per metric, each covering the whole Netherlands with 10 m spatial resolution). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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vegetation points. This was followed by canopy cover as the second most 
time-consuming metric calculation (Fig. 5c). All other LiDAR metrics 
took on average < 5 s per file to calculate, with ecosystem height metrics 
generally being calculated with <1 s per file (Fig. 5c). 

3.3. LiDAR metrics 

The PCA of the 25 LiDAR metrics revealed three major dimensions of 
ecosystem structure (Dim1–3, Fig. 6a). Together those three PCA axes 

explained ~75% of the variation (Appendix A Fig. A.1). PCA axis 1 
(Dim1) was mainly characterized by ecosystem height (Fig. 6b), with 
percentiles, averages and maximum values of normalized z (i.e. Hp50, 
Hp75, Hp95, Hmax, Hmean, Hmedian) making the strongest contribu
tions (Appendix A Fig. A.1). PCA axis 2 (Dim2) was mainly characterized 
by ecosystem cover (see Pearson coefficients of Dim2 in Fig. 6a), spe
cifically the density of vegetation points in the lower vegetation strata (i. 
e. BR_1_2, BR_2_3, BR_3_4, and BR_4_5; Fig. 6b), i.e. vegetation strata up 
to 5 m height. Finally, PCA axis 3 (Dim3) was represented by ecosystem 
structural complexity (see Pearson coefficients of Dim3 in Fig. 6a), 
namely by skewness, kurtosis and vertical variability of normalized z 
value (Appendix A Fig. A.1). The three LiDAR metrics with the highest % 
contribution to the first three PCA axes were Hp75 (Dim1), BR_3_4 
(Dim2) and Hskew (Dim3), respectively (Appendix A Fig. A.1). These 
three LiDAR metrics represent the three major dimensions of ecosystem 
structure across the Netherlands, namely the geographic variation in 
ecosystem height, ecosystem cover and ecosystem structural complexity 
(Fig. 6c–e). 

4. Discussion 

We present Laserfarm, a high-throughput workflow enabling the re- 
tiling, normalization, feature extraction and rasterization of large 
amounts of LiDAR point clouds into high-resolution raster layers of 
ecosystem structure. Laserfarm is implemented in Python, available as 
Jupyter Notebooks and designed with horizontal scalability for different 
infrastructures, i.e. the processing of multi-terabyte LiDAR point clouds 
through parallel execution and distribution of computations over many 
nodes or across a cluster of VMs. Using Laserfarm on an IT infrastructure 
with 11 VMs (each with 2 cores), we demonstrate the efficient, scalable 
and distributed processing of a country-wide LiDAR point cloud dataset 
from the Netherlands with ~700 billion points and ~16 TB uncom
pressed data volume, with an estimated wall-time of ~2 weeks. A larger 
number of computational nodes would further decrease the wall-time 
for processing a LiDAR dataset due to the high-throughput capability 
of the Laserfarm workflow and its seamless scalability across different 
computing infrastructures. It is worth noting that the actual computing 
time of the process might differ due to various factors, such as processing 
errors, VMs being offline, system errors or environment required 
maintenance. 

The first step in the Laserfarm workflow is to re-tile the sizes and 
volumes of files that are available from national or institutional LiDAR 
repositories (Table 1). Data providers make their multi-terabyte LiDAR 
point clouds accessible with different file sizes because each dataset has 
different characteristics, e.g. in terms of data volume, point density, or 
spatial extent. The Dutch AHN3 dataset contained 1367 LAZ files of 5 
km × 6.25 km coverage ranging in volume from 0.3 MB to 6 GB, which 

Fig. 4. File volumes of the (a) raw data from the Dutch AHN3 point cloud dataset (n = 1367 LAZ files), (b) re-tiled and normalized data (n = 37,457 LAZ files) after 
applying the re-tiling and normalization module of the Laserfarm workflow to the AHN3 raw data, and (c) raster layers (n = 25 GeoTIFF files) after the whole 
Laserfarm workflow had been applied. Boxplots show the interquartile range and median, with the whiskers extending to the data extremes. See Table 3 for summary 
statistics of file numbers and volumes. 

Table 3 
Overview of the number and volume of files used in the Laserfarm workflow as 
applied to the airborne laser scanning data from the third Dutch national flight 
campaign (AHN3). Summary statistics are provided for the (1) raw data (AHN3 
LiDAR point clouds available as LAZ files from the Dutch repository), (2) re-tiled 
and normalized data (split LAZ files after applying the Laserfarm re-tiling and 
normalization module), and (3) raster layers of LiDAR metrics (final GeoTIFF 
files after applying all four modules of the Laserfarm workflow).  

Data type Number 
of files 

Spatial 
coverage of a 
single file 

Average 
volume per 
file (mean ±
SD) 

Range of 
volumes 
across files 
(min – max) 

Raw data 
(AHN3) 

1367 5 km × 6.25 
km 

1.75 ± 0.93 
GB 

0.27 MB – 
6.00 GB 

Re-tiled & 
normalized 
data 

37,457 1 km × 1 km 
0.15 ± 0.08 
GB 

0.0006 MB – 
1.16 GB 

Raster layers 25 
Whole 
Netherlands 

0.75 ± 0.22 
GB 

0.21 GB – 1.04 
GB  

Table 4 
Performance of the Laserfarm workflow for generating geospatial data products 
of ecosystem structure from airborne laser scanning data of the third Dutch 
national flight campaign (AHN3). Total and average central processing unit 
(CPU) times as well as total wall-time estimates are provided. Number of files per 
workflow module: Re-tiling: 1367 LAZ files from AHN3; Normalization & 
feature extraction: 37,457 re-tiled LAZ files; Rasterization: 25 GeoTIFF files. See 
Table 3 for spatial coverage and volumes of files.  

Workflow 
module 

Total CPU time 
(days) across all 
files 

Average CPU time 
(minutes) per file (mean 
± SD) 

Total wall- 
time (days) 

Re-tiling 13.26 13.96 ± 9.88 1.21 
Normalization 96.68 3.72 ± 1.22 4.39 
Feature 

extraction 
178.32 6.86 ± 2.44 8.11 

Rasterization 5.97 343.78 ± 8.03 0.54 
TOTAL 294.23 – 14.25  
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we re-tiled into a regular grid of 1 km × 1 km resulting in 37,457 tiles 
using the Laserfarm workflow. As a result of the high compression factor 
of the LAZ format (~10×), the large sizes of these input files (average 
volume of ~1.75 GB) required VMs with a large memory (64 GB RAM 
per node for re-tiling and rasterization, and 32 GB RAM per node for the 
remaining steps in the workflow). LAZ files provided by other national 
or institutional LiDAR repositories can differ substantially in file size and 
volume. For instance, the country-wide LiDAR point clouds from Spain 
(2nd coverage, 2015–present, 196,529 tiles, about 6 TB in total) have 
tiles with 2 × 2 km size and a much smaller volume of approximately 
50–150 MB per file (due to the smaller coverage of each file and the 
lower point density compared to AHN3). The small volume of these 

input files may only require VMs with a small memory (e.g. 8–16 GB 
RAM). Users of the Laserfarm workflow can flexibly configure the 
computing environment, e.g. in terms of memory allocation, number of 
workers, and cores for each worker that are available on a specific 
computing infrastructure. Thoroughly testing the expected usage of 
memory and cores is recommended. If the sizes of input files exceed the 
limit of available memory allocation, the files can be first split into 
smaller tile sizes before applying the re-tiling step of the Laserfarm 
workflow. For instance, the tiles of the new (fourth) Dutch national ALS 
flight campaign (AHN4) are provided with the same tile extent as the 
AHN3 (5 km × 6.25 km size), but with a larger average volume of ~4.5 
GB per file (due to the higher point density and additional attributes 

Fig. 5. Performance of the Laserfarm workflow for processing the Dutch AHN3 point cloud dataset into raster layers of ecosystem structure. (a) Total CPU time (in 
days) per workflow module. For the feature extraction module, the CPU time is separated for pre-computations (e.g. reading/writing files and neighbourhood 
calculations) and the actual LiDAR metrics calculation. Note that the CPU time for pre-computations differs between the pulse penetration ratio (PPR) and all other 
LiDAR metrics because the former requires both ground and vegetation points whereas the latter only vegetation points. (b) Average CPU time per file and workflow 
module in minutes. For the feature extraction module, the CPU times include the pre-computations and the LiDAR metrics calculation. (c) Average CPU time (in 
seconds) for LiDAR metric calculations within the feature extraction module (excluding the CPU time for pre-computations). The numbers on the x-axis refer to 
LiDAR metrics in Table 2. File numbers: Re-tiling = 1367 raw LAZ files from AHN3; Normalization = 37,457 re-tiled LAZ files; Feature extraction = 37,457 
normalized & retiled LAZ files (calculating 25 metrics in total); Rasterization = 25 GeoTIFF files. Boxplots show the interquartile range and median, with the 
whiskers extending to the data extremes. 
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stored in each points compared to AHN3). We provide an additional 
Jupyter Notebook for this which can be applied to other ALS datasets 
with such large tile volumes (https://github.com/eEcoLiDAR/misc 
ellaneous/blob/splitting/jupyter_notebooks/splitting.ipynb). 

The second step in the Laserfarm workflow is the normalization of 
each individual point which is implemented using the ‘Normalize’ 
module of the ‘Laserchicken’ software (Meijer et al., 2020). We used the 
height relative to the lowest point within a target volume, defined as a 
square cell with a cell size of 1 m. This is a simple and easy way to 
implement point cloud normalization and broadly corresponds to the 
most commonly used approach for normalizing non-ground points by 

subtracting the terrain surface from the remaining ALS returns using a 
derived digital terrain model (DTM) (Rapidlasso Rapidlasso GmbH, 
2022; Roussel et al., 2020). Occasionally, DTM methods and ground 
point interpolations can lead to inaccuracies in normalized heights 
(Roussel et al., 2020). For instance, in small ditches or steep terrain a 
non-ground return (from vegetation) can be lower than the interpolated 
height from a DTM, resulting in negative normalized height values. Our 
approach of normalization is less prone to such inaccuracies because it 
uses the lowest height among all points in a specified cell, rather than 
normalizing with a DTM based on ground points only. All normalized 
heights are therefore positive by definition. However, a potential issue 

Fig. 6. Principal Component Analysis (PCA) of Light Detection And Ranging (LiDAR) metrics and their key dimensions along geographic gradients of ecosystem 
structure in the Netherlands. (a) Correlation plot (Pearson correlation coefficients) of all 25 LiDAR metrics (see abbreviations in Table 2). The LiDAR metric with the 
largest % contribution to each of the first three PCA axes (Dim1, Dim2, Dim3) is indicated with a black arrow (compare plots of contributions of variables to each 
dimension in Appendix Fig. A.1). (b) Co-variation and contribution of LiDAR metrics to the first two PCA axes (Dim1, Dim2) which together explain nearly 67% of 
variation in ecosystem structure. See Appendix Fig. A.1 for co-variation along Dim3. (c)–(e) Geographic variation of three LiDAR metrics (Hp75, BR_3_4, Hskew) that 
show the largest % contribution to Dim1, Dim2 and Dim3, respectively. These metrics represent aspects of ecosystem height, ecosystem cover and ecosystem 
structural complexity, respectively (compare Table 2). 
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with this normalization approach is that discontinuities in normalized 
heights and terrain height variability at very high resolution are less well 
captured in steep terrain, especially within the resolution of the defined 
cell size (e.g. <1 m). Independent of the normalization method, we 
recommend users to critically explore each dataset after normalization 
to detect under which circumstance inaccuracies might emerge. 

A core aspect of the Laserfarm workflow is the feature extraction, 
which is computationally the most expensive part. We exemplify the 
feature extraction with a set of statistical properties of the point cloud 
which provide features that capture ‘ecosystem morphological traits’ 
(Valbuena et al., 2020), specifically LiDAR metrics related to ecosystem 
height, cover, and structural complexity. The calculation of ecosystem 
structure LiDAR metrics in the Laserfarm workflow makes use of the pre- 
classification in the raw data (LAZ or LAS files), which is typically 
defined using the ASPRS point class standard (ASPRS, 2019). Ground 
points are usually well pre-classified because a main focus of ALS sur
veys is terrain mapping (Assmann et al., 2022; Kraus and Pfeifer, 1998). 
Vegetation points are sometimes pre-classified as classes 3, 4 and 5 
based on the ASPRS standard (ASPRS, 2019), representing low, medium 
and high vegetation, respectively. However, many ALS datasets 
(including the Dutch AHN3) are delivered without such a specific pre- 
classification for vegetation points. We therefore used the unclassified 
class to represent vegetation. This contains some biases (e.g. cars, poles 
and road fences being considered as vegetation), but the misclassifica
tion rate of vegetation points is low (~5%) and the derived LiDAR 
metrics show high accuracy (~90%) (Kissling et al., 2022). For the 
inaccuracies that remain (e.g. through ships, chimneys and cars), we 
provide an additional raster layer from available cadastre data in the 
Netherlands as a mask. However, this does not remove all inaccuracies 
because other human infrastructures such as railway electrification 
systems and powerlines are either not captured in this mask or not 
represented in the available AHN3 point cloud pre-classification. Users 
of the generated ecosystem structure data (GeoTIFF files) therefore need 
to explore whether errors and inaccuracies remain for their use cases or 
specific study sites in the Netherlands. 

The final step in the Laserfarm workflow is the rasterization of the 
calculated LiDAR metrics (in PLY format) into raster layers (e.g. Geo
Tiff). These raster layers have a manageable size (e.g. ~0.75 GB per 
metric for 10 m resolution raster layers across the Netherlands) and can 
be readily used in software familiar to many ecologists (e.g. GIS or R). 
The spatial resolution of the raster layers is defined during the feature 
extraction step using the Laserchicken target volume of a square infinite 
cell (Meijer et al., 2020), and by defining the volume size (e.g. 10 m). 
Other resolutions could be flexibly defined (e.g. 1 or 5 m), but the 
quality, accuracy and information content of the derived LiDAR metrics 
can depend on the characteristics of the LiDAR point clouds (Coops 
et al., 2021; Gobakken and Næsset, 2008; Koma et al., 2021b; Koma 
et al., 2021c). The mean or upper height of vegetation derived from ALS 
point clouds is probably among the most robust and reliable LiDAR 
metrics, independent of ecosystem type (Coops et al., 2021; Koma et al., 
2021c). Scalability and robustness of other LiDAR metrics may be 
strongly influenced by available point densities (Jakubowski et al., 
2013), which vary widely among country-wide ALS datasets (Table 1). 
Other LiDAR data acquisition parameters such as flight height, scanner 
type, scan angle, and sampling design might additionally affect the 
comparability of LiDAR metrics (Wulder et al., 2012). Hence, accuracy 
assessments of LiDAR metrics from different ALS datasets (e.g. different 
countries or different time periods) are therefore needed within and 
across different types of ecosystems (e.g. forests, wetlands and grass
lands). This is particularly relevant if ecosystem structure data are 
needed for a consistent and comparable biodiversity monitoring at high 
resolution over broad spatial extents, e.g. in the context of essential 
biodiversity variables (Valbuena et al., 2020; Vihervaara et al., 2017). 

We have used the Jupyter environment in combination with the ALS 
data from the third Dutch national flight campaign (AHN3) together 
with the IT services of the Dutch national facility SURF for developing 

the Laserfarm workflow. Specifically, we implemented Laserfarm in 
Jupyter Notebooks, using a cluster of 11 VMs each with 2 cores on the 
HPC Cloud from SURF, and the SURF GRID storage infrastructure for 
managing the ~16 TB of ALS raw data, together with the intermediate 
LAZ and PLY files and the final raster layers. Deploying the Laserfarm 
workflow on other compute infrastructures (e.g. cloud computing en
vironments such as Microsoft Azure, Amazon Web Services, or the Eu
ropean Open Science Cloud) will require consideration of memory 
allocation and performance bottlenecks during parallelization. For 
instance, the re-tiling of large input files requires big memory machines 
which are expensive and uncommon in cloud environments. This means 
that tiles available from ALS repositories (Table 1) might need to be split 
into smaller tile sizes, e.g. using the laspy library from PyPi (see 
methods). Applying the Laserfarm workflow to other airborne LiDAR 
data from different regions or countries only requires minimal modifi
cation. For instance, the coordinates of a different spatial extent have to 
be specified within the set_grid{} function of the re-tiling module and 
the classification code of vegetation points has to be specified within the 
feature_extraction_input{} function of the feature extraction module. 
LiDAR data collected on other platforms than airplanes can also be 
processed with the Laserfarm workflow, including 3D point clouds from 
terrestrial, mobile, UAV and vehicle laser scanners. The most important 
differences between such datasets are the point density and data vol
ume. Hence, particular attention should be given to parameters that are 
closely related to point density, such as the grid cell size for the 
normalization and the memory allocation during the configuration. 

While the Laserfarm workflow as presented here uses the Dask li
brary (Rocklin, 2015) for efficiently scheduling the execution, each 
workflow module still depends on the previous one. Hence, the indi
vidual cells (corresponding to the processing steps as expressed in the 
structure of the Jupyter notebooks) show dependencies regarding in
puts/outputs, which may result in performance bottlenecks when the 
Laserfarm workflow is executed on remote cloud infrastructures (e.g. 
each step will wait for the longest running subprocess to complete). 
Conceptionally, the Laserfarm workflow can also be split by input data, 
rather than by processing steps, with the individual data stream only 
being merged at the end, a model which is well suited to (commercial) 
cloud providers and/or more exploratory analysis at scale. Ongoing 
development work in this direction is focussing on containerizing the 
Laserfarm workflow by encapsulating it into reusable cells (e.g. as 
standardized RESTful API services) and testing its automated execution 
on remote cloud infrastructures (Wang et al., 2022). Moreover, the 
Jupyter Notebook of Laserfarm is currently used for developing a virtual 
lab in the context of a collaborative cloud virtual research environment 
(VRE) which provides extended functionality for composing workflows, 
managing the lifecycle of computational experiments, and sharing the 
results among a broad users community (Zhao et al., 2022). In this 
context, the integration of LiDAR data with other data sources (e.g. 
biodiversity and climate data) or analytical services (e.g. species dis
tribution modelling pipelines) might further benefit from a federated 
cloud infrastructure that can address scientific computation, data ana
lytics and heterogeneous data storage of multiple data types in one 
platform (Fiore et al., 2017). This could feed into the development of 
Digital Twins (DTs) that support advanced simulation, modelling, and 
prediction capabilities for monitoring and predicting environmental 
change and human impacts on biodiversity and ecosystems, similar to 
the DTs that have been proposed for climate change modelling and 
adaptation (Bauer et al., 2021). 

5. Conclusion 

LiDAR point clouds from national and regional ALS surveys are 
increasingly becoming available and provide opportunities for moni
toring and modelling biodiversity and the structure and functioning of 
ecosystems. Laserfarm offers a fully free and open-source workflow for 
the efficient, scalable, and distributed processing of such multi-terabyte 
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point clouds on different computing infrastructures, including high 
performance computing clusters and cloud computing environments. 
The generated data products can be applied in ecological analyses, 
including the modelling of animal diversity (Davies and Asner, 2014), 
the prediction of species distributions and ecological niches (Bakx et al., 
2019; Koma et al., 2021a), and the monitoring of a globally consistent 
set of ecosystem structure variables at regional scales (Valbuena et al., 
2020). The extendibility and flexibility of the Laserfarm workflow also 
allows users to add new LiDAR metrics of ecosystems structure, or to 
expand the set of features to other metrics such as topographic de
scriptors (Assmann et al., 2022), neighbourhood calculations for 
detecting archaeological remnants (Inomata et al., 2020), or indicators 
of ecosystem condition and forest productivity (Goodbody et al., 2021). 
Following FOSS development best practices, we make use of an issue 
tracker (i.e. the GitHub Issues functionality) to collect and track user 
contributions such as questions, reported bugs and feature requests. We 
envisage that the further deployment of the Laserfarm workflow will 
empower the wider use and uptake of LiDAR metrics in biodiversity 
science, ecosystem monitoring, policy support and landscape 
management. 

Data availability 

The current version (v0.2.0) of the Laserfarm workflow is available 
from PyPI (https://pypi.org/project/laserfarm/) or Zenodo (doi: 
https://doi.org/10.5281/zenodo.3842780). A detailed documentation 
of the Laserfarm workflow is provided on the documentation website 
(https://laserfarm.readthedocs.io/en/latest/). We further provide 
Jupyter Notebooks (https://github.com/eEcoLiDAR/AHN/tree/main/ 
AHN3) which allow the implementation in Jupyter (https://jupyter. 
org/), a web-based interactive development environment for config
uring and arranging workflows in data science and scientific computing. 
All code of Laserfarm is also hosted and freely available from GitHub 
(https://github.com/eEcoLiDAR/Laserfarm). User feedback such as 
questions, reported bugs and feature requests are collected and tracked 
via GitHub (see contributing guidelines: https://github.com/eEcoLiDA 
R/Laserfarm/blob/master/CONTRIBUTING.md). All changes that are 
made to the Laserfarm workflow are also documented on GitHub (http 
s://github.com/eEcoLiDAR/Laserfarm/blob/master/CHANGELOG. 
md). The Laserfarm GitHub repository further includes a tutorial 
structured as a Jupyter Notebook (tutorial.ipynb) which illustrates the 
use of the Laserfarm workflow to process a subset of the Dutch AHN3 
dataset (from the retrieval of an example point cloud data file in LAZ 
format to the export of the extracted features to a GeoTIFF file). A second 
notebook (workflow.ipynb) shows the workflow employed to process 
the full AHN3 dataset (illustrating how the re-tiling, point cloud data- 
processing and GeoTIFF-exporting tasks can be configured and distrib
uted over the nodes of a local or a remote compute cluster). Moreover, 
Python scripts and pipeline configuration files (https://github.com/e 
EcoLiDAR/Laserfarm/tree/master/examples) that have been used to 
test the various pipelines either on local machines or on a virtual docker- 
container-based cluster (https://github.com/eEcoLiDAR/dockerTe 

stCluster) are also provided on GitHub. Versioning of the Laserfarm 
workflow is tracked on GitHub (https://github.com/eEcoLiDAR/ 
Laserfarm/releases). 

The raw LiDAR point clouds from AHN3 can be viewed through 
PDOK (https://www.pdok.nl/introductie/-/article/actueel-hoogtebest 
and-nederland-ahn3-) or the AHN viewer (https://ahn.arcgisonline. 
nl/ahnviewer/), and downloaded via the PDOK webservices (https://a 
pp.pdok.nl/ahn3-downloadpage/). A script for automatically down
loading AHN point cloud files is provided on GitHub (https://github.co 
m/eEcoLiDAR/downloadAHN). The processed raster layers of the 25 
LiDAR metrics are available from Zenodo (https://zenodo.org/recor 
d/6421381). 
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Fig. A.1. Results from a Principal Component Analysis (PCA) of Light Detection And Ranging (LiDAR) metrics (see metric abbreviations in Table 2). (a)–(b) Co- 
variation and contribution of LiDAR metrics to PCA axis 1 and 2 (Dim1, Dim2) and PCA axis 2 and 3 (Dim2, Dim3), respectively. The metric with the highest 
contribution to each axis is highlighted in red. (c) Scree plot showing the % explained variance of the first ten PCA axes (dimensions 1–10). (d)–(f) Contribution (%) 
of each LiDAR metric to Dim1, Dim2, and Dim3, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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